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ABSTRACT 
This paper presents an architecture that affords mobile users 
greater trust and security when browsing the internet (e.g., when 
making personal/financial transactions) from public terminals at 
Internet Cafes or other unfamiliar locations. This is achieved by 
enabling web applications to split their client-side pages across a 
pair of browsers: one untrusted browser running on a public PC 
and one trusted browser running on the user's personal mobile 
device, composed into a single logical interface through a local 
connection, wired or wireless. Information entered via the 
personal device's keypad cannot be read by the PC, thwarting 
PC-based key-loggers. Similarly, information displayed on the 
personal device's screen is also hidden from the PC, preserving 
the confidentiality and integrity of security-critical data even in 
the presence of screen grabbing attacks and compromised PC 
browsers. We present a security policy model for split-trust web 
applications that defends against a range of crimeware-based 
attacks, including those based on active-injection (e.g. inserting 
malicious packets into the network or spoofing user-input 
events). Performance results of a prototype split-trust 
implementation are presented, using a commercially available 
cell phone as a trusted personal device. 

Categories and Subject Descriptors 
D.2.11 [Software Architectures]: Data abstraction, Domain-
specific architectures, Information hiding, Patterns 

General Terms 
Security, Performance, Design, Experimentation, Human 
Factors. 

Keywords 
Split-trust, trusted personal device, crimeware, phishing, user 
interface design 

1. INTRODUCTION 
As people are increasingly relying on the web for security 

critical tasks, crimeware, malicious software designed expressly 

to facilitate illegal activity, is being used to steal identities and 
commit fraud. The Anti-Phishing Working Group (APWG), a 
global consortium of companies and financial institutions 
focused on eliminating Internet fraud, report that the use of 
crimeware has “surged markedly” with the number of new 
crimeware applications discovered doubling from April to June 
2005 [4] and this trend continues into 2008. The increase is so 
marked that the APWG believe that ultimately “conventional 
phishing via social engineering schemes will be eclipsed by 
advanced, automated crimeware” [5]. 

To date, the most prevalent form of crimeware is the 
keylogger: a program that secretly records users' key-presses, 
transmitting sensitive information (e.g. credit card numbers, 
usernames and passwords) back to criminals. Other examples of 
crimeware include applications that record the contents of users' 
screens, silently redirect web browsers to attackers' websites and 
maliciously spoof user-input to control web applications (e.g. 
trigger a money transfer in an on-line bank) [30, 18]. 

Technically savvy individuals have always been wary of 
the threat of crimeware on public terminals (e.g. Internet cafes). 
Worryingly, however, the recent wave of crimeware attacks has 
involved malicious applications installing themselves on users' 
personal PCs, either as Trojans [19] or by exploiting OS-level 
vulnerabilities [18]. 

The threat of crimeware poses fundamental challenges to 
the web's security model. In particular, although HTTPS/SSL 
protects data as it is transmitted between client and server, it 
cannot protect data from compromised end-points. For example, 
as soon as the contents of an HTTPS URL have been decrypted 
by the Secure Socket Layer (SSL) it can be snooped by Trojan 
browser-extensions, screen-grabbers and other forms of 
crimeware. Similarly, HTTPS/SSL does not preserve the 
privacy or integrity of user input; malicious applications running 
on the PC can, for example, record key presses and even fake 
user input (e.g. generate a spoofed click event on a hyperlink). 

Split-Trust Browsing addresses the threat of crimeware by 
allowing people to browse the web using a combination of a 
general-purpose networked PC and a personal, more trusted 
device, linked together as a device composition. For the most 
part, a user browses the web via the PC as normal. However, 
security-critical operations are performed in conjunction with 
their personal device, using its display and keypad for I/O. 
Information entered via the personal device's keypad cannot be 
read by the PC, thwarting PC-based key-loggers. Similarly, 
information displayed on the personal device's screen is also 
hidden from the PC, preserving the confidentiality of security-
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critical data even in the presence of screen-grabbing attacks and 
compromised PC browsers. We believe that the composition of 
general purpose PCs with trusted mobile devices gives users the 
best of both worlds: they can enjoy the rich browsing 
capabilities of their PC, with its large display and full-sized 
keyboard and the greater degree of trust associated with 
viewing/entering security-sensitive data via their personal 
device. 

The technical contribution of this paper is an architecture 
for split-trust web browsing through mobile composition: a 
technique that enables web applications to split their HTML 
across a pair of browsers–one untrusted browser running on a 
PC and one trusted browser running on a user's personal device. 
A key feature of our architecture is that it requires only a local 
(wired or wireless) connection between the personal device and 
PC: this provides a better user-experience, since a low-latency 
direct connection means that the two devices can be kept in tight 
synchronization with each other. As well as splitting content 
across the PC and personal device, our architecture also allows 
HTML Forms to be split. In this way secure fields (e.g. credit 
card details) can be filled in on the trusted personal device, 
while fields that do not contain sensitive information (e.g. 
delivery dates or product selections) can be filled in on the PC. 
In addition to exploring the systems issues surrounding split-
trust web-browsing, we also present a Security Policy Model for 
split-trust web-applications and consider a range of attacks 
against split-trust systems in general. 

The concept of a trusted personal device is an interesting 
one, and one which is currently topical within the mobile 
computing industry [1, 11]. One could imagine manufacturing a 
small, locked-down device with the specific purpose of 
augmenting a user's web browsing to provide enhanced security. 
Alternatively, one may argue that some existing cell phones or 
PDAs already provide a more secure computing platform than 
general purpose PCs, and can thus be used as trusted personal 
devices providing increased security [6, 23]. Security is in fact a 
relative concept as we can raise the bar to prevent a particular 
level of attack, but no system is without some weakness. 
However, we believe our work provides a practical 
improvement over the level of security available to mobile users 
as this time. A fuller discussion of what constitutes a trusted 
personal device is presented in Subsection 7.1.  

1.1 Structure of the Paper 
We begin by presenting a system overview that takes 

advantage of the potential interplay between untrusted fixed 
infrastructure and more trustworthy personal mobile devices 
(section 2). We classify the mechanisms used by crimeware-
based attacks and present a set of general design principles that 
enable split-trust web applications to address these attacks 
(Section 3). Technical details of our split-trust browsing 
implementation are then presented (Section 4). Various attacks 
against split-trust web-applications are considered with 
discussion of how well our architecture defends against each of 
them (Section 5). Finally, after describing related work (Section 
6) and discussing general design & system issues (Section 7), 
we conclude and present directions for future work (Section 8). 

2. SPLIT-TRUST SYSTEM OVERVIEW 
Figure 1 shows a high-level overview of our architecture 

for split-trust browsing. The (untrusted) PC connects to the web 
server over the Internet, using HTTP to request web pages in the 
usual manner [33] The trusted personal device connects directly 
to the PC using a suitable data-link technology (e.g. USB, 
Bluetooth, WiFi).  

 
Figure 1 High-level overview of our system for split-trust 

browsing 

 
The HTML fetched from the web server contains both 

regular content, which is rendered in the PC's browser in the 
usual way, and encrypted messages destined for the trusted 
personal device. The Remote Device Communication (RDC) 
Agent, which runs on the PC, is responsible for forwarding such 
messages between the web server and the personal device. 
When a message is received by the personal device it is 
decrypted and displayed on its screen. Similarly, messages 
generated by the personal device (as a result of user input) are 
encrypted before being sent back to the web server via the RDC 
Agent. The session key used to encrypt these messages is known 
only to the trusted personal device and the web server; 
crimeware running on the untrusted PC is thus unable to read 
the encrypted web content. So, although the RDC itself may be 
compromised, this does not compromise the underlying secure 
exchanges. 

A critical feature of our architecture is that it does not 
require the personal device to establish a separate Internet 
connection to the web server. Instead we tunnel data sent 
between the web server and the personal device over the PC's 
existing Internet connection, relying on the RDC Agent to de-
multiplex these two logical channels. This model offers a 
number of benefits over the “two separate Internet connections” 
approach: (i) it provides a better user-experience, since the low-
latency direct connection between the personal device and PC 
means that the two devices can be kept in tight synchronization 
with each other; (ii) it does not require the user to incur the extra 
cost of a separate Internet connection for their personal device–
e.g. over GPRS or 3G; (iii) the architecture is applicable to 
personal devices that do not support Internet connectivity but 
still provide direct, point-to-point data connections, e.g. a PDA 
with a USB link; and (iv) it enables tight integration with client-
side functionality such as tabbed browsing: when the user clicks 
on a different browser tab on the PC, the RDC Agent traps this 
event and updates the screen of the user's personal device 
accordingly.  
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Figure 2 (a) Browsing on the PC while entering security-
critical information via the cell phone; (b) A close-up of the 

phone 

 
Figure 2 shows our system being used to make a secure e-

commerce transaction, using a Motorola E680 cell phone as a 
trusted personal device. The PC browser is used for non-
security-critical tasks: browsing the product catalogue, making 
selections etc. However, when the user starts to purchase the 
goods, the form requesting credit card details automatically 
appears on their cell phone. The user fills in these private details 
via their cell phone's keypad and selects “submit” from their 
phone to make the purchase. Crimeware running on the PC is 
not able to read the content displayed on the phone; nor is it able 
to snoop the user's key-presses to steal their credit card details. 

Although, for the sake of simplicity, this paper assumes 
that web applications have been written explicitly to support 
split-trust browsing, the architecture described could be layered 
on top of existing applications via HTML-rewriting proxies. The 
design of such proxies and mechanisms for specifying the 
required transformations is a topic of future work. 

3. SECURITY MODEL 
In order to explain the motivation behind our trusted 

browsing architecture we first present our threat model and 
security policy model [3]. 

3.1 Threat Model 
Attackers' motivation is to steal private and confidential 

information, often with a view to committing identity theft and 
fraud. We assume that attackers are capable of using crimeware 
to mount both passive monitoring attacks and active injection 
attacks against the PC. Passive monitoring attacks include 
recording everything shown on the PC's display, typed on the 
PC's keyboard and transmitted over the network. Active 
injection attacks include injecting malicious data packets into 
the network, injecting malicious data packets into the direct 
connection to the personal device and also injecting fake User 
Interface (UI) events into the PC (e.g. spoofing a click on a 
hyperlink, or spoofing key-presses to fill-in and submit an 
HTML form). Further, we assume that the PC-based browser is 
untrustworthy. For example, crimeware running on the PC may 
cause the browser to silently redirect the user to an attacker's 
web site, or to maliciously generate/rewrite HTML (e.g. modify 
link/form targets, add/remove content).  

We assume that the user's personal device is free of 
crimeware and that attackers therefore have no means of either 
recording the contents of its screen or data entered via its 
keypad. HTML received via the PC is rendered faithfully in the 
personal device's browser, and user-input performed via the 
personal device's keypad is relayed correctly back to the PC. 

3.2 Security Policy Model 
As outlined in subsection 1.2 we address the threat model 

presented above by migrating security-sensitive parts of the 
interface to a trusted personal device. However, in order to 
benefit from the security provided by this browsing model, a 
split-trust web application must satisfy the following five 
properties: 
1. The end-to-end communication channel between the web 

server and the trusted personal device must be 
authenticated and encrypted. This prevents an attacker 
from snooping traffic between the web server and the 
phone. It also prevents an attacker from maliciously 
injecting fresh data into this channel.  

2. All security-sensitive form fields must be filled in via the 
trusted personal device. Combined with Property 1, this 
prevents the untrusted PC from snooping any security-
sensitive data entered by the user.  

3. All security-sensitive information must be displayed only 
on the trusted personal device. Combined with Property 1, 
this prevents the untrusted PC from snooping any security-
sensitive information served by the web application.  

4. The web application must not allow form submissions from 
the trusted device to be replayed. This prevents an attacker 
from maliciously re-using previous security-sensitive form 
data entered on the personal device in subsequent 
transactions. 

5. All security-critical operations must be initiated (or 
confirmed) via a form on the trusted personal device. 
Further, there must be sufficient information displayed on 
the personal device's screen to specify fully the action 
being initiated. Combined with Properties 1 and 4. this 
ensures that crimeware on the untrusted PC cannot 
subversively initiate an unauthorized security-critical 
operation (e.g., a money transfer in an on-line bank) 
without alerting the user.  
Properties 1 to 3 are self-explanatory; however, Properties 

4 and 5 require further elaboration. We will consider these  
properties in reverse order, starting with Property 5. 

3.3 Property 5 
The first part of Property 5 is straightforward: security-

critical operations must be initiated or confirmed via the trusted 
personal device. The motivation for this is clear–by forcing 
security-critical operations to be confirmed on the trusted 
personal device, the untrusted PC cannot subversively initiate 
such operations without alerting the user. 

The second part of Property 5 is more subtle and protects 
against a class of attacks highlighted by Balfanz et. al. [6]. To 
understand its purpose, it is first helpful to consider the 
following analogy. Unscrupulous Charlie arrives at Bob's office 



 

and says “please sign the following authorization to transfer 
$100 from your bank account to Alice's bank account.” 
However, while saying this, he hands Bob a piece of paper 
which says only “I authorize the money transfer.” Bob signs the 
paper and Charlie takes it to the bank. As he passes it to the 
cashier he says “here's the authorization to transfer all funds 
from Bob's bank account to my bank account.” The cashier 
checks Bob's signature and performs this transfer. The security 
flaw here is obvious: the authorization slip is not specific 
enough: as a result Charlie is able to fool Bob into believing it 
means one thing, whilst fooling the bank that it means 
something else. 

Unless web applications specify confirmation dialogues for 
security-critical operations carefully, there is a direct analog of 
this attack that can be played out in a split-trust browsing 
scenario. Consider the following example. An on-line bank's 
web server generates an HTML page which is rendered on the 
untrusted PC's browser and contains two links: one with text 
“click here to transfer $100 to Alice's bank account”, and one 
with text “click here to transfer all funds to Charlie's bank 
account”. The browser on the untrusted PC has been subverted 
so that it maliciously swaps the link targets over: the link with 
text “transfer $100 to Alice's bank account” now points to the 
action of transferring all funds to Charlie's bank account and 
vice-versa. The user clicks on one of the links and, in 
accordance with the first part of Property 5, a confirmation form 
appears on the screen of their trusted personal device asking 
them to authorize the money transfer. It is now clear why the 
text of the confirmation must “specify fully the action being 
initiated”. If the confirmation is under-specified–e.g., if the text 
reads only “please confirm money transfer”–then the user is not 
alerted to the attacker's ploy of swapping the link targets. 
However, if the confirmation is specified fully–e.g. the text 
reads “please confirm the transfer of all funds from your 
account to Charlie's account”–then the user is immediately 
alerted to the fact that the action currently being performed is 
not the action they thought they had initiated. The user thus 
decides not to confirm the action and no money is transferred.  

3.4 Property 4 
We now turn our attention to Property 4, which specifies 

that a web application must not allow form submission 
messages from the trusted personal device to be replayed (i.e., a 
web application must not accept data arising from the same 
form submission action more than once). To see why this is 
important, consider the following attack. An on-line banking 
system sends a form to a user's trusted personal device asking 
them to confirm a money transfer to Alice's account. When the 
user submits the form (via their trusted personal device), the 
(untrusted) PC records the resulting submit message. Although 
an attacker cannot read the contents of this message (since 
Property 1 requires that it is encrypted with a key known only to 
the personal device and the web server), they can nonetheless 
replay it in response to a subsequent transaction. Thus, an 
attacker may maliciously initiate another money transfer to 
Alice's account (e.g. by spoofing a click-event on the “transfer 
money” link in the untrusted PC's browser) and then replay the 
user's previous confirmation message in order to complete the 
transfer.  

Without Property 4 an attacker could thus circumvent our 
requirement that users explicitly confirm every security-critical 
operation. This is why the explanatory (non-italic) text of 
Property 5 observes that it is only when “combined with 
Property 4” that it ensures “crimeware on the untrusted PC [is 
prevented from] initiating any unauthorized security-critical 
operations”. 

4. TECHNICAL DETAILS 

 
Figure 3 Architecture diagram showing components running 
on both the untrusted PC and the trusted personal device 
 

We have built a prototype split-trust browsing framework 
using a commercially available cell phone (Motorola E680) as a 
trusted personal device. Our prototype uses Bluetooth [8] for a 
wireless connection between the TPD and untrusted PC, relying 
on the Bluetooth PAN profile to provide IP connectivity over 
the Bluetooth link; the TPD components are designed for 
embedded Linux (the operating system running on the Motorola 
E680.). In this section we present the technical details of our 
implementation. Figure 3 shows the main components of the 
system. The Firefox browser runs on the untrusted PC with the 
RDC Agent implemented as a Firefox Browser Extension [9]. 
The cell phone runs a simple cHTML [17] browser which has 
been implemented as a Java MIDlet. 

On initiating a split-trust browsing session, a user connects 
their cell phone to the PC using a local communication 
technology of choice: e.g. USB, Bluetooth, or WiFi. They 
execute our extended Firefox browser on the PC and start 
surfing. As usual, regular (non-split-trust) web sites appear 
entirely on the PC. However, if the user visits a web-application 
that supports split-trust, then security-sensitive parts of its 
interface automatically appear on their cell phone. 

The HTML fetched from a split-trust web application 
contains (i) regular content, rendered on the PC as usual; and (ii) 
a number of AES-encrypted [10], Base64 [16] embedded 
messages. Each of these messages contains cHTML content that 
may ultimately appear on the personal device's screen. The 
RDC Agent, running inside Firefox, extracts embedded 
messages from the received HTML and forwards them to the 
phone over HTTP (see Figure 3). 

The cell phone runs a local HTTP Daemon that receives an 
HTTP Request from the RDC Agent and, via CGI scripts, passes 
the embedded message contained within it to the Crypto Layer. 
There it is decrypted before being rendered in the phone's 
browser. The Crypto Layer is also responsible for encrypting the 
contents of form fields filled-in on the cell phone before this 



 

data is sent back to the RDC Agent on the PC. To simplify user-
interface issues the phone's browser does not allow hyperlinks; 
instead, all hyperlinks reside on the PC-side interface. 

In the remainder of this section we describe the 
architectural components outlined above in more detail. We start 
by showing how messages for the personal device are embedded 
into regular HTML pages (Section 4.1); we then describe the 
implementation of the RDC Agent (Section 4.2) and briefly 
outline the design of the components running on the cell phone 
(Section 4.3). For simplicity, our initial description of the 
system does not consider the splitting of HTML forms. The 
details of how form fields can be split between the PC and 
personal device are described separately (Section 4.4). Finally, 
we present a performance evaluation of our implementation 
(Section 4.5). 

 
<html ...> <head> 
  <title>Split-Trust Browsing 

Example</title> 
  <meta name="split-trust-browsing" 

content=""> </head> 
 
<body> <!-- This HTML will be rendered on 

the PC browser as usual:> 
<h2>Click on a link below to display secure 

message on trusted personal device:</h2>
 
<p><a name="rdc-onClick-0" 

class="personaldevice" 
href="JavaScript::">Link 1</a> 

<p><a name="rdc-onClick-1" 
class="personaldevice" 
href="JavaScript::">Link 2</a> 

 
<!-- --------------- Messages for the 

personal device embedded here: ---------
---------- -->   

<form name="rdc-data"> 
 
  <!-- Default content, displayed on 

personal device when page loaded:> 
  <input type="hidden" name="rdc-onLoad-

msg" value="oYW5rcyBmb3IgY2xpY2tpb ... 
nZS4====="> 

 
  <!-- This message is displayed on 

personal device when user clicks on link 
'rdc-onClick-0' --> 

  <input type="hidden" name="rdc-onClick-0-
msg" value="WW91ciBWUE4gYWNjb3VudCBk ... 
a9gfI======"> 

 
  <!-- This message is displayed on 

personal device when user clicks on link 
'rdc-onClick-1' --> 

  <input type="hidden" name="rdc-onClick-1-
msg" value="IGxvZ2luIGRldGFpbHMgYXJl ... 
VFNDQ====="> 

</form> 

Figure 4 An example HTML page containing embedded 
messages for the trusted personal device. 

4.1 Embedding Split-Trust in HTML 
Figure 4 shows an example HTML page that may be 

served by a split-trust-enabled web application. A single meta 
tag with attribute name="split-trust browsing" 
specifies that this page contains embedded messages destined 
for a trusted personal device. By examining the contents of form 
rdc-data one can see that the page contains 3 such embedded 
messages, each stored in the value attribute of a hidden field. 
On loading the page Firefox renders the HTML in the usual 
way, displaying the <h2> and the two <a> tags on the PC's 
screen. (Since the messages for the personal device are 
embedded in hidden form fields they do not affect the page 
layout.) 
     The name attribute of a message's enclosing form field 
specifies the event that the message is associated with. For 
example, in the page shown in Figure 4, the message contained 
within the field entitled rdc-onLoad-msg is forwarded to the 
personal device as soon as the browser has finished loading the 
HTML. Names prefixed “rdc-onClick” are reserved for 
messages triggered by click events. 
     In Figure 4 the message contained in the field entitled 
rdc-onClick-0-msg is associated with the link defined by 
the <a> tag with name rdc-onClick-0. Similarly, message 
rdc-onClick-1-msg is associated with link rdc-
onClick-1. When the user clicks on a link, the RDC agent 
checks if there is an associated message and, if there is, 
forwards it to the trusted personal device. Although not shown 
in Figure 4, other names refer to different types of events. For 
example, we could have named a link rdc-onMouseOver-3 
and provided a corresponding message entitled rdc-
onMouseOver-3-msg.  

4.2 RDC Agent 
We implemented the RDC Agent as a Firefox Browser 
extension, writing it in a combination of JavaScript [13] and 
XML [33]. Whenever a page is loaded the RDC Agent first 
checks for the presence of the split-trust-browsing 
meta tag (see above). If this is not found the RDC Agent stops 
processing immediately, ensuring that the extension does not 
degrade the performance of non-split-trust sites. If the meta tag 
is present, the Browser extension uses the DOM API [13] to 
check if there are any <a> tags prefixed rdc-. For each of these 
<a> tags an event listener is added with a callback function that 
forwards its associated message to the personal device. Finally, 
if there is a form field named rdc-onLoad-msg then the 
message it contains is forwarded to the personal device 
immediately. 

4.2.1 Authentication and Key Exchange 
A prerequisite to transmitting encrypted messages between 

the web server and the personal device is the negotiation of a 
session key between these two parties. Several existing Internet 
standards define secure key-exchange mechanisms, such as 
SSHv2 (rfc4253) [32], IKE (rfc2409) [15] and SSL/TLS 
(rfc2246) [12]. Our current implementation uses SSHv2 
authentication/key-exchange, specifically diffie-hellman-
group1-sha1 with RSA host keys. We did not use the SSHv2 
Diffie-Hellman Group Exchange mechanism due to the 



 

additional round-trip of packets required, but this can easily be 
added for increased security if desired. The RDC Agent acts as a 
coordinator for the authentication/key-exchange process. 

A split-trust web application initiates key-exchange and 
authentication by serving an HTML page containing a meta tag 
with name="kex-init". The RDC agent detects the 
presence of this tag and sends an HTTP Request (R1 in Figure 
5) to the personal device requesting its first key exchange 
message. The RDC Agent receives M1, contained in the body of 
the HTTP Response, and forwards it along as a new HTTP 
Request M1’ which is sent to the web server. The web server 
responds with its key exchange reply M2, which the RDC Agent 
forwards as M2’ to the personal device via another HTTP 
Request. The response is sent back to the PC via R2, and the 
processes continues. Thus, by making alternate HTTP Requests 
between the personal device and the web server, the RDC agent 
co-ordinates the flow of cryptographic messages necessary for 
key exchange (the dotted lines of Figure 5). Note that the full 
diffie-hellman-group1-sha1 protocol requires a third 
message that, due to space constraints, is not shown in Figure 5. 
 

 
Figure 5 Using the RDC Agent to negotiate a key exchange 

between the web server and personal device over HTTP 
RPC calls.   

 

    When the phone has authenticated the web server (verifying 
the host-key by means of a certificate) it displays a confirmation 
dialogue on its screen informing the user of the web server's 
identity and asking if they want to proceed. Thus, if crimeware 
on the PC has silently redirected the browser to an attacker’s 
site, this fact will be revealed to the user via their trusted 
personal device. (Redirection attacks will be considered more 
deeply in Section 5.1). 

The value attribute of the kex-init meta-tag contains 
a continuation URL akin to a form's action attribute. When the 
key exchange/authentication protocol has been completed, the 
RDC Agent redirects the browser to this URL. In this way a web 
application can request a key exchange and then, once a session 
key, SK, has been established, redirect the browser to show a 
new split-trust page in which embedded messages are encrypted 
with SK. Note that key exchange is not limited to the start of a 

split-trust browsing session: the web server can request a new 
session key at any time by means of a kex-init meta-tag. 

4.3 Components on the Cell Phone 
We implemented a prototype Crypto Layer for the cell 

phone (see Figure 3). The multi-precision Modular 
Exponentiation required for the key exchange/authentication 
protocol relies on the open source GNU Multi-Precision 
Arithmetic library (libGMP), which we cross-compiled for the 
phone. An open-source AES reference implementation was also 
cross-compiled for the phone in order to decrypt messages 
received from the RDC Agent and the encrypted phone-based 
user input. 

For technical reasons we were unable to interface our 
system with the phone's built-in browser; instead, we 
implemented a simple cHTML browser as a Java MIDP 
Application in order to display content on the cell phone. The 
Java browser interfaces with the (native) Crypto Layer via a 
loopback TCP connection. The implementation of the phone's 
browser is made considerably easier by the fact that hyperlinks 
are not permitted on the personal device (see Section 3). 

4.4 Dealing With Forms 
So far we have seen how a split-trust web application can 

embed encrypted content in HTML pages, and how the RDC 
Agent running on the PC can forward this content to be 
displayed on the cell phone when specific events occur. Here we 
show how this framework can be extended to deal with split 
HTML forms in which some fields are displayed on the PC 
while others appear (and are filled in) on the cell phone. 
 
<a name="rdc-onClick-0" ...> 
Click here to enter credit card  

details</a> 
... 
 
<form name="myForm" action="..." 

method="POST"> 
 
<field type="hidden" name="rdc-onClick-0-

msg" value="AKHJ3VAORTU49 ... 
LGHUBVEBJ1084XZ0==="> 

 
<field type="hidden" 
   name="rdc-onClick-0-response" value=""> 

Figure 6: Form to be displayed on Trusted Mobile 

As with regular content, forms to be displayed on the phone 
are encrypted and embedded in the HTML messages served by 
the split-trust web application. For example the code fragment 
in Figure 6. 

When the user clicks on the <a> tag named <rdc-
onClick-0> (on their PC) the RDC Agent forwards rdc-
onClick-0-msg to the personal device in the usual manner. 
This message can contain a mix of cHTML content and form 
fields which are rendered in the phone's browser. If, after 
decrypting a message, the phone finds that it contains form 
fields, it relays this information back to the RDC-Agent in its 
HTTP Response (see Figure 3). This triggers the RDC-Agent to 
poll the phone for the user's response (via repeated HTTP 
Requests). 



 

The user fills in the form fields via their phone's keypad 
and selects “Submit” in their phone's browser. The Crypto 
Layer, running on the phone, encrypts this user input and returns 
it to the RDC-Agent in an HTTP Response. When an encrypted 
response is received, the RDC Agent inserts it into the value 
attribute of field rdc-onClick-0-response (see above). 
Thus when myForm is submitted, the web application receives 
data entered on the cell phone via the contents of this field. 

Of course, the untrusted PC may maliciously swap the 
encrypted messages in the rdc-onClick-*-response 
fields before submission. To protect against this attack the 
encrypted message generated by the personal device actually 
contains a set of (<fieldname>, <user-input>) pairs. On receipt 
of a form input message from the trusted personal device the 
web application parses both the fieldname and corresponding 
user input ensuring that, even if messages are swapped by the 
untrusted PC, the right user input is bound to the right field. 

A single form can contain fields displayed on both the PC 
and the phone. In the above example, myForm could contain 
regular (i.e. not hidden) fields which would be rendered by the 
Firefox Browser in the usual way. On submitting the form, the 
web application thus receives the values of those fields entered 
on the PC, as well as encrypted form response messages from 
the personal device. 

4.4.1 Form Submission 
There are two alternative mechanisms of submitting split-

trust form data back to the web server. First, an application can 
specify that a form should be submitted by means of a “submit” 
button displayed on the PC's browser. This is achieved by 
simply adding a regular submit button to the HTML above. 

Second, an application can instruct the RDC Agent to 
submit a form automatically as soon as a response is received 
from the phone. In the above example the web application can 
request this behavior by including: 
 
<field type="hidden" name="rdc-onClick-0-
submittype" value="automatic"> 
 

Automatic submission is ideal for scenarios such as phone-
based login: as soon as a username and password are entered 
and confirmed on the phone's keypad the web-application 
proceeds to the next page. In contrast, manual submission (via a 
button on the PC's browser) is often suitable for pages that 
contain multiple phone-based forms. In this case users can fill in 
each of the forms on their cell phone before finally clicking 
submit in the PC's browser to transmit all this data back to the 
web application. 

For each phone form, a web-application can also include a 
corresponding status element, displayed on the PC (e.g. <p 
name="rdc-onClick-0-status">). When the RDC 
Agent forwards a form specification to the phone, it 
simultaneously updates the innerHTML property [13] of the 
corresponding status element (rendered on the PC) to inform the 
user that the form is “currently being edited on the phone”. 
Similarly, when a user response is received, the status element is 
updated to notify the user that a “form submission has been 
received from the phone”. 

4.4.2 Avoiding Replay Attacks 
Recall that Property 4 of our Security Policy Model 

(Section 3.2) requires that form data entered via the phone must 
not be subject to replay attacks. To enforce this property we 
require that each encrypted form specification served by the 
web application contains a fresh nonce [28] and a timestamp. 
The phone's browser automatically copies this information into 
its encrypted form response message. On receiving a form 
response message the web application decrypts it and then 
checks (i) that it has not seen the nonce before; and (ii) that the 
response is timely. 

4.5 Performance Evaluation 
To assess the performance of our implementation we 

measured the latency incurred between a user performing an 
action (e.g. clicking on a link) and an associated 850 byte 
message appearing on the phone's screen. The message is 
encrypted using AES with a 1024-bit key and Base64 encoded; 
our choice of 850 bytes is very much worst case–we expect 
most messages sent to the phone to be significantly smaller than 
this. 

Our PC was a 2.5GHz Pentium 4 with 512Mb RAM; our 
trusted personal device was a Motorola E680 smart phone, 
which has a 400MHz Intel XScale (Bulverde) Processor and 
32MB RAM / 32MB Flash. Each of the measurements were 
averaged over 20 trials. As shown in Figure 7, the latency of 
each of the components of the system is as follows: 
 
1. The time taken between the RDC Agent receiving a UI-

event and initiating an HTTP Request containing the 
message to be forwarded is negligible (invariably less than 
1 ms). 

2. With the phone connected to the PC via USB, the time 
taken to send the HTTP Request containing the encrypted 
850 byte message to the phone is 0.1s (s.d. 0.01s). 

3. The time taken to Base64 decode the message on the phone 
is 0.2s (s.d. 0.02s). 

4. The time taken to AES-decrypt1 the message on the phone, 
w/ a 1024-bit key, is 0.38s (s.d. 0.01s). 

5. The time taken to send the decrypted message to the Java 
Browser (over a loopback TCP connection) and to render 
the content on the phone's screen is 0.2s (s.d. 0.05s). 
 
Thus the average end-to-end latency between the user 

generating an event on the PC (e.g. clicking on a link) and the 
corresponding 850 bytes of content being rendered on the 
phone's screen is 0.88s. Even for this worst-case message size 
we believe that 0.88s falls within the limits of acceptable 
latency for web usage models (since it is comparable to the time 
taken to fetch a page from a web server over the Internet). Since 
the time complexity of Base64 decoding and AES decryption is 
O(n), the latency would reduce linearly with message size. 
Furthermore, higher performance processors are filtering into 

                                                                 
1 Note that our AES component only performs decryption; it 

does not check message integrity. Verifying message integrity 
on the mobile device would incur extra-latency (adding a 
factor of at most 2 to the measurement reported here).



 

the design of modern smart phones, which will further decrease 
the latency of all cryptographic functions. 

 
Figure 7 Latencies of the individual components of our 

implementation (averaged over 20 trials). Error bars show 
standard deviations. TPD abbreviates Trusted Personal 

Device–in this case, the Motorola E680 phone. 
 

Regarding the performance of key exchange, using libGMP 
the Motorola E680 is able to generate a 1024-bit random 
number and compute a modular exponentiation using Oakley 
Group 2 Diffie-Hellman Parameters [15] in an average of 0.06s 
(s.d. 0.004s). Thus the time taken to perform key exchange and 
authentication is most likely to be dominated by the round-trip-
times of the HTTP messages initiated by the RDC-Agent (see 
Figure 3). 

5. ATTACKS AGAINST SPLIT-TRUST 
BROWSING 

In this section we consider a number of attacks against 
split-trust browsing and consider how well we can defend 
against them. 

5.1 Phishing 
Crimeware attacks are different from conventional phishing 

attacks: whereas the former rely on malicious software running 
on users' machines (e.g. key-loggers), the latter rely entirely on 
social engineering, attempting to fool users into unwittingly 
entering security-sensitive information into attackers' websites. 
This paper has motivated split-trust browsing primarily as a 
technique for addressing PC-based crimeware attacks. However, 
the general split-trust browsing technique can also be leveraged 
to address conventional phishing. For example, the server may 
validate the identity of the user by means of challenge/response 
authentication with their personal device (cf. one-time 
passwords). Alternatively, we may combine split-trust browsing 
with a password hashing [26] scheme. In this case, a password 
entered on the personal trusted device is hashed with some 
known properties of the website (including its domain name) 
before being sent back to the server.2 Both these techniques 
would make it harder for phishers to obtain reusable credentials. 

                                                                                                                                                                        
2 Although password-hashing can be implemented directly on 
the untrusted PC [26] this does not protect against OS-level key 

Another possible phishing-style attack involves redirecting 
the untrusted PC to a similar-looking domain name and then 
presenting a valid certificate for the fake domain. Although, at 
session-initiation time, a message would appear on the trusted 
personal device asking if the connection should proceed, the 
user may not spot that the company/domain name is incorrect. 
They may therefore click continue and unwittingly connect to 
the attacker's server. 

This is a general problem with certificate-based 
authentication that we do not claim to have solved. However, as 
a side note, we observe that we can leverage users' mobile 
devices to make physical certificate exchange practical. For 
example, we may forbid the trusted personal device from 
accepting any certificates over the network. Instead, users may 
present their trusted personal devices at trusted retail outlets and 
high-street banks in order for the companies' certificates to be 
physically uploaded. Although this makes the system more 
cumbersome to use, it does give users reason to believe that the 
certificates on their device are only from reputable companies, 
addressing the redirection problem. 

5.2 Active Injection Attacks 
Since we assume that the PC may be entirely 

compromised, crimeware has the capability to rewrite the 
HTML in the PC's browser–e.g. swapping link targets around, 
adding new links, modifying text. We address this issue with 
reference to our Security Policy Model (Section 3.2). From 
points 4 and 5 of the Security Policy Model we know that even 
if the user is fooled into initiating a security-sensitive operation 
due an HTML-rewriting attack, all that will happen is that a 
fully-specified confirmation dialogue appears on their trusted 
personal device. If the user does not confirm the action via the 
trusted personal device the web-application will not carry it out. 
Similarly, since points 1-3 of the Security Policy Model require 
the web application to encrypt all security-sensitive content, an 
HTML rewriting attack cannot cause this information to be 
revealed. 

The problem of active-injection (see Section 3.1) is dealt 
with in the same way. If crimeware on the untrusted PC 
maliciously attempts to initiate a security-sensitive operation 
(say, by spoofing a click on a hyperlink) then our Security 
Policy Model dictates (i) that no security-sensitive operations 
will be performed without first requesting confirmation via the 
trusted personal device; and (ii) that, since security sensitive 
information is always encrypted, it will not be revealed. 

Another form of HTML rewriting attack relates to form 
submission. In this case the untrusted PC may maliciously put 
an encrypted user-input message received from the personal 
device into the wrong form field before completing a form 
submission (see Section 4.4.1). The aim of this attack may be to 
fool the web application into binding the wrong piece of user-
input to the wrong form field. Recall that (from Section 4.4.1) 
that we deal with this attack by ensuring that encrypted user-
input messages generated by the trusted personal device contain 
(<fieldname>, <user-input>) pairs, which are parsed by the web 
application. Since crimeware on the untrusted PC cannot change 

 
logging attacks. Thus we would implement password-hashing 
on the trusted device. 



 

the content of the encrypted messages it cannot cause the wrong 
piece of user-input to be associated with the wrong form field. 
Also, in accordance with point 4 of our Security Policy Model, 
we ensure that crimeware cannot replay form submissions (see 
Section 4.4.2). 

It is worth observing that attacks against the RDC Agent 
directly are really just special cases of HTML-rewriting/active 
injection attacks. 

5.3 Message Re-Ordering Attacks 
A major difference between our architecture and 

conventional secure transport protocols (such as SSH [32]) is 
that we do not embed sequence numbers in encrypted messages. 
A man-in-the-middle (including, of course, crimeware on the 
untrusted PC) is thus able to re-order the messages in transit 
between the web-application and the trusted personal device. 

Our omission of a sequence number is quite deliberate; it 
would provide no additional security in the context of our 
architecture. The reason for this is because crimeware on the 
untrusted PC is already capable of mounting active-injection 
attacks. Why bother to preserve the order in which packets were 
sent by the web-application when the order in which they were 
requested can be spoofed so easily? Instead, we observe that 
message re-ordering attacks are just a subset of HTML rewriting 
and active-injection attacks, and address them in the same 
manner: not by preventing them from happening, but by 
designing web-applications in such a way that it does not matter 
if they do happen–i.e. with reference to our Security Policy 
Model. 

As a brief aside, note that one may propose an alternative 
split-trust web-browsing framework in which all clicks on 
hyperlinks are initiated (or somehow confirmed) on the personal 
device. In this context, SSH-style sequence numbering would 
provide some value, since the order in which the web-
application sends its messages is worth preserving. However, 
the downside of this scheme is that the requirement to 
initiate/confirm all clicks via the personal device would make 
the system cumbersome to use. Thus, we argue that our Security 
Policy Model finds a sweet-spot on the security-usability 
spectrum for split-trust applications. 

5.4 Social Engineering Attacks 
Split-trust browsing requires users to understand a simple 

principle: trust your personal device, not the PC. However, 
attackers may conspire to make users doubt this principle 
causing them (say) to unwittingly confirm a security-sensitive 
operation via their trusted personal device. 

For example, the untrusted PC may perform an HTML-
rewriting attack, maliciously adding the text “you will now see a 
confirmation dialogue appearing on your personal device; please 
click confirm”. At the same time, it may use an active-injection 
attack to initiate a security-sensitive operation. The question is, 
when the confirmation dialogue appears on their personal 
device, will users remember the “trust your personal device, not 
the PC” principle, or will they be fooled into clicking on 
confirm? 

We believe that this type of attack is dangerous–the success 
of phishers suggests that some users will always be duped by 
this kind of ploy. However, although split-trust browsing is not 

fool proof against attacks of this nature, it still raises the bar. 
Without split-trust browsing, an active-injection attack 
perpetrated by crimeware running on the PC would simply 
result in a security-sensitive operation being performed–the user 
would not have any chance to prevent it. With split-trust 
browsing crimeware has to simultaneously initiate the security-
sensitive operation and successfully fool the user into OK-ing 
the fully-specified confirmation dialogue on their phone. 

Extensive user testing is required to determine how users of 
split-trust web applications may respond to this type of attack. 

6. RELATED WORK 
The idea of simultaneously using multiple devices to 

access applications and data has been explored extensively by 
the research community [21, 25]. Our work adopts these ideas, 
using them to protect against PC-based crimeware attacks. We 
are also influenced by the Situated Mobility [24, 31] and 
Parasitic Computing [22] models of ubiquitous computing, in 
which small mobile devices (e.g. cell phones) co-opt computing 
resources already present in the environment (e.g. public 
screens) to facilitate interaction with their users. 

In the first author’s previous work [29], split-trust is 
applied at the framebuffer level of a thin-client/server system. In 
that framework it is possible for the user to censor information 
on the public terminal, using the (smaller) display of the trusted 
device as a “lens” to “reveal” parts of the censored display. This 
paper explores a different level of abstraction at which the user 
interface can be split: namely, the HTML level. The advantage 
of the framebuffer approach is that users can run unmodified 
desktop applications; the benefit of the approach described in 
this paper is that we can exploit the additional structure of 
HTML (as opposed to pixels) to provide a more natural user-
interface split between trusted and untrusted devices.  

Balfanz and Felton demonstrated the idea of splitting an 
application between a trusted PDA and untrusted PC in the 
context of email signing [6]. In this paper we extend their idea, 
presenting a general architecture for split-trust web 
applications. 

Ross et al. developed a web-proxy which detects security-
sensitive words and phrases in HTML content, replacing them 
with code-words. Users can simultaneously connect their PDA 
to the proxy in order to download a mapping from code-words 
back to their original text [27]. Ross' work does not allow 
HTML to be split generally and, most critically, does not allow 
data-entry to be performed via the PDA; as a result his system 
does not protect against key-logging and active injection 
attacks. We believe our architecture for splitting HTML 
generally, our ability to migrate user-input to the trusted 
personal device to avoid PC-based key-logging attacks, and our 
Security Policy Model for generalized split-trust web-
applications is a significant advance on Ross' work. 

Ross' web-proxy [27], and other previous work on split-
trust architectures [23] require the personal device to open a 
dedicated Internet connection to a trusted server. In contrast, 
one of the interesting aspects of our split-trust framework for 
web applications is that we are able to embed encrypted 
messages in the untrusted PC's HTML, relying on the RDC 
Agent to de-multiplex these two logical channels. Although it 
does not affect the security properties of the system, for the 



 

reasons stated in Section 3.2, we believe that this approach leads 
to significant usability benefits. 

Recently researchers have considered an alternative to 
split-trust applications in which a trusted mobile device is used 
to establish the trustworthiness of a public terminal [14]. This 
provides a usage model whereby, once the trustworthiness of the 
public terminal has been established, one proceeds to use it 
exclusively, without looking at the trusted personal device 
again. Whilst this may present some usability advantages, the 
disadvantages of this approach are (i) the public terminal 
requires a Trusted Platform Module (thus exposing the 
architecture to the general problems surrounding TPMs [2]); and 
(ii) since only the integrity of the software is verified, these 
systems do not protect against hardware attacks (e.g. keyloggers 
in compromised keyboards). A hybrid approach is presented in 
[20] in which a mobile device is used to both verify the integrity 
of software running on an untrusted terminal, and to facilitate 
secure input. 

Previous work on split-trust systems [6, 23, 27] has not 
considered how applications may be written to minimize trust in 
the client PC. We believe that our Security Policy Model is an 
important contribution in this respect. Whereas Oprea et. al. 
admit that they are forced to “trust [the client PC] to a certain 
extent” [23], our Security Policy Model demonstrates that it is 
possible to design split-trust applications that put no trust 
whatsoever in the client PC. 

Recent advances in mobile device technology make it 
possible for users to browse the web conveniently and 
effectively using solely their phone or PDA. This fact does not 
undermine the utility of the split-trust model, however, since 
there will always be many situations where one would prefer to 
browse the web on a full-size desktop PC as opposed to on a 
mobile device (e.g. whilst at home or at work)–the split-trust 
model applies to these scenarios. Also, as mobile devices 
become increasingly complex they necessarily become less 
trusted, until ultimately one requires a separate, simpler TPD to 
use in conjunction with their phone or PDA! This scenario is 
actually less ridiculous than it first appears since the simpler 
TPD could be embedded within the form-factor of the mobile 
device itself. In this model special purpose hardware could even 
share the screen and keypad between the TPD and (untrusted) 
Application Processor (AP) in such a way that (i) the 
keypad/display is only accessible to either the TPD or the AP at 
any given time; and (ii) the user is given clear, unspoofable 
indication of this modality (e.g., an LED connected directly to 
the display/keypad switching circuitry). A TPD embedded in the 
same casing as an otherwise untrusted personal device may 
either be used in conjunction with desktop PCs (as described in 
this paper), or in conjunction with the regular web browser on 
the personal device itself. 

7. DISCUSSION 
This section considers several aspects of the split-trust 

browsing model to clarify premises & considerations during the 
planning of this project. 

7.1 What Makes a Personal Device Trusted? 
Ideally, one could imagine designing and manufacturing 

trusted personal devices specifically for split-trust browsing. 

Such devices could be technically very simple supporting only 
basic I/O capability, a data-link technology that enables direct 
connection to a PC (e.g. USB or Bluetooth), cryptographic 
functionality and a stripped down cHTML browser. A security-
focused design from the outset, combined with its technical 
simplicity could make such a product a significantly more 
trusted platform than a modern general purpose PC. 

From a more pragmatic perspective, some security 
researchers claim that some existing cell phones and PDAs 
already provide a more trusted computing platform than general 
purpose PCs [6, 23]. In particular: (i) users only rarely install 
privileged applications on their phones3 reducing the risk of 
Trojan-based crimeware; and (ii) whereas it is often easy for 
attackers to gain physical access to PCs in order to install 
crimeware, it is much harder to gain physical access to a users' 
cell phone. 

Thus, whilst the best trusted personal devices would be 
designed specifically for that purpose from the outset, we 
believe that, in the short term, users could still benefit from 
split-trust browsing with their existing PDAs or cell phones. 
(We note that the architecture presented in this paper is 
applicable regardless of the implementation details of trusted 
personal devices.) 

A number of manufacturers are starting to incorporate 
hardware into cell phones specifically to provide strict process 
isolation and to manage encryption keys/private data [1, 11]. 
We see this as a promising sign, suggesting that security is 
increasingly being seen as an important aspect of mobile 
computing devices. Such technology has the potential to isolate 
trusted mobile applications (such as application-support 
required for split-trust browsing) from the effects of mobile 
phone viruses [7] and malicious code. 

7.2 Generalizing Our Architecture 
The architecture presented in Section 4 is just one of a 

number of possible implementation alternatives, each with their 
own advantages and shortcomings. For example, we may have 
chosen to implement the RDC Agent as an HTTP proxy that 
runs as a native process on the PC. This has the benefit of 
enabling one RDC Agent to work with multiple browsers; 
however, it makes it more difficult for the RDC Agent to 
respond to user-interface events occurring within the browser4. 

Similarly, we may have chosen a different embedding 
strategy for messages destined for the trusted personal device, or 
a different mechanism for co-coordinating key exchange. The 
purpose of Section 4 is thus not to present the definitive 
architecture for split-trust browsing, but instead to demonstrate 
that such an architecture can be built on top of existing 
infrastructure whilst achieving acceptable performance. 

                                                                 
3 Many phone applications that users install are sandboxed Java 
MIDP applets that are not capable of general key-logging or 
screen-grabbing. 
 
4 For example, the RDC Agent presented in Section 4.2 works 
well with Firefox's tabbed browsing–when the user clicks on a 
different tab, the RDC Agent traps this event and forwards the 
new page's rdc-onLoad-msg to the user's personal device 
 



 

There are a number of ways that the architecture presented 
in this paper could be generalized. For example, in its current 
form, the trusted personal device only stores one session key at 
a time; thus, when a new split-trust session starts, the previous 
one is automatically closed. To avoid this we could borrow from 
SSL client design, enabling the trusted personal device to 
maintain a table of active session keys indexed by the domain of 
the current URL. 

There are also a number of places where the mechanism for 
splitting content between PC and personal device could be 
generalized. For example, our current implementation does not 
allow images to appear on the personal device. This 
functionality could be added (say) by allowing image data to be 
embedded directly in the cHTML forwarded to the personal 
device. Similarly, one may wish to allow hyperlinks to appear 
on the trusted personal device (a feature which our current 
architecture does not allow). Of course, it is unclear whether 
these generalizations would have a positive or a negative effect 
on the overall usability of the system. Further research is 
required to answer such questions. 

7.3 Usability Issues 
Although this is primarily a mobile systems-security paper, 

there were some usability issues that came to light during our 
implementation work which we choose to document here. 

On the PC screen there is a clear need to visually 
differentiate between links that cause new content to appear on 
the PC and links that cause new content to appear on the 
personal device. To address this issue we used a style-sheet that 
defined a class of “personal device link”, rendering them with a 
highlighted background. A web application uses the class 
attribute to mark these links (see Figure 4). 

The factor that we found made the most significant 
difference to usability is at first a seemingly trivial concern: the 
ability to stick the personal device on the side of the PC 
monitor. This enables both hands to be free for mouse/keyboard 
input; furthermore, the proximity between the PC display and 
the phone display enables the user to keep them both in their 
peripheral vision simultaneously. As a result, the user 
experiences virtually no overhead in managing the two displays: 
instead, they are able to treat the two logical displays as one. 

8. CONCLUSIONS 
Crimeware is becoming a serious problem, threatening to 

take over from phishing as the dominant form of cyber-crime in 
the not too distant future [5]. The web's security model 
(HTTPS/SSL) protects data as it is transmitted between client 
and server, but does not prevent crimeware attacks in which the 
end-points themselves are compromised. In this paper we have 
proposed an architecture for split-trust browsing through mobile 
composition that allows users to combine their PC with a trusted 
personal device to fight crimeware (Section 1). 

Our architecture requires web services, public terminals 
and mobile devices to run special software to facilitate split-trust 
browsing. Installing the required application on the mobile 
device is unlikely to pose a problem; neither is installing the 
software on the untrusted terminal (we have shown this can be 
packaged and distributed in the form of a browser plug-in). 
However, the fact that service providers also have to modify 

their applications is a likely barrier to adoption. To address this 
issue, an interesting topic of future work would be to implement 
HTML-rewriting proxies that impose a split-trust policy over 
unmodified web applications. A simple and generic example of 
such a proxy would be one that sent all password fields in 
HTML forms to the mobile device while leaving the rest of the 
HTML unmodified. More complicated split-trust policies could 
be written programmatically for particular applications, perhaps 
in a policy-language designed specifically to express split-trust 
transformations. Of course, such proxies would have to be 
trusted. 

In future work we would like to perform usability testing 
around the split-trust model. We believe it would be particularly 
interesting to evaluate the impact of some of the social-
engineering attacks against split-trust browsing (see 
Section 7.4). 

As we have discussed in Section 7 split-trust web browsing 
is not a panacea. However, we do believe that it has the 
potential to provide consumers with a significantly greater 
degree of security in the face of ever-increasing crimeware and 
phishing attacks. Of course, our system delivers value 
proportional to the security of the trusted personal devices 
employed. It is our hope, therefore, that by presenting 
application scenarios for secure mobile computing, split-trust 
research motivates vendors to incorporate security-enhancing 
technologies (e.g. ARM's TrustZone [1] and Intel's Mobile 
A [11] into personal devices.) I 
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