
System Challenges for Ubiquitous & Pervasive Computing

Roy Want
Intel Research

2200 Mission College Blvd.
Santa Clara, CA 95052
roy.want@intel.com

Trevor Pering
Intel Research

2200 Mission College Blvd.
Santa Clara, CA 95052

trevor.pering@intel.com

ABSTRACT
The terms Ubiquitous and Pervasive computing were first
coined at the beginning of the 90's, by Xerox PARC and IBM
respectively, and capture the realization that the computing
focus was going to change from the PC to a more distributed,
mobile and embedded form of computing. Furthermore, it was
predicted by some researchers that the true value of embedded
computing would come from the orchestration of the various
computational components into a much richer and adaptable
system than had previously been possible. Now some fifteen
years later, we have made progress towards these aims. The
Hardware platforms used to implement these systems
encapsulate significant computation capability in a small form-
factor, consume little power and have a small cost. However, the
system software capabilities have not advanced at a pace that
can take full advantage of this infrastructure. This paper will
describe where software and hardware have combined to enable
ubiquitous computing, where these systems have limitations and
where the biggest challenges still remain.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and Embedded Systems, Microprocessor/microcomputer
applications, Smartcards.

General Terms

Design, Management, Reliability, Standardization

Keywords

Ubiquitous & Pervasive Computing, Power Management,
Wireless discovery, User Interface Adaptation, Context-Aware.

1. INTRODUCTION
Many of the tasks that are undertaken in everyday work
practices can be augmented by some form of computation;
however, beyond the digital office applications, such as world

processing and spreadsheets, it is much more difficult to
understand how to apply computation in a form that is readily
appropriate for the task. For instance, a nurse may find that the
traditional pen & clipboard approach to taking notes while
talking with a patient may be better suited to their interaction
than turning away to type at a conventional PC, despite the
resulting inefficiency of needing to re-enter it into an archival
electronic form later on. The ideals of Ubiquitous Computing, a
term first used by Mark Weiser [16] at Xerox PARC in 1988,
attempt to understand how to integrate computation with the
physical world in a way that blends in so completely that it
becomes unnoticeable, a property often referred to as
“invisibility”. One of his analogues used to convey the idea is
our interaction with ink and the printed word: if a page is well
presented we rarely dwell on the printing technology, the ink or
the font, but instead are rapidly drawn into the information that
is being conveyed. However, current computer systems are
rarely this transparent and often force the users to dwell on
issues that are purely related to the processing platform, not the
application that is being supported. Faults are rarely simple to
diagnose and any system that involves several cooperating
computers usually requires specialist knowledge for its set-up
before any work can begin.
Fifteen years ago, some of the challenges for Ubiquitous
Computing were more at the component level than at the system
level. The performance available in PCs was determined by the
capabilities of the Intel 486 processor, while low-power
microcontrollers were only good enough for ‘washing machine’
class applications and crude handheld devices. Embedded
processors lacked the horsepower, or peripheral support, that is
needed to solve real world problems. Also, wireless networking,
a critical component for interconnecting the mobile components
of a ubiquitous system was in its infancy and there were no
widely adopted wireless standards.
Early attempts to integrate computing into a more mobile and
wirelessly connected environment such as Xerox’s Parctab, the
first palm sized context-aware computer [14], were based on
system-level design principles that allowed researchers to ‘time
travel’ into a future use model, but traded-off system
communication for computation and storage. For example, the
Parctab system allowed complex applications to be run in
remote workstations: the mobile devices were designed as
wireless ‘dumb’ displays, sending pen and button events
through a diffuse infrared network, while responses were
received as graphic updates for the display. An additional
benefit of this computational offloading was that the power

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

mailto:roy.want@intel.com
mailto:trevor.pering@intel.com

budget in the mobile devices became manageable, and they
remained small. Currently, the important difference between
these heavily networked systems and those using today’s
technologies is that the trade-off between communication,
processing, and storage in these systems has shifted and is
continuing to shift in favor of more computation and storage in
the mobile system components, allowing lower interaction
latency and more resilience to disconnected operation.
However, software engineering techniques have not as yet
adapted to offer an easy way for developers to balance these
considerations, highlighting an area for future progress.
Now with Intel XScale class processors available at clock rates
reaching upwards of 0.6GHz, flash memory subsystems
exceeding 1GB, and power budgets of only 500mW, it becomes
practical to run complex calculations locally and only use the
communication channel to capture ephemeral data, control other
systems, to send messages, or to convey the results of a
calculation. Furthermore, the growth of the storage component
is exponentially outstripping the bandwidth improvements in the
communication channel. Thus from a pragmatic software
engineering perspective, preloading content in mobile devices
will become the favored design approach. At this time, it is still
important to carefully consider what needs to be preloaded, but
as the exponential storage curve continues upward, everything
that might be needed while mobile, will be preloaded as a matter
of course and the algorithms can become less selective.
Although systems have continually been improving, power has
always been a thorn in the side of the Ubiquitous computing
vision. Since computation as we know it is based on electronic
devices, Ubiquitous computing also implies the ubiquitous need
for power. For fixed infrastructure, wired power suffices, and it
is the general reliability of the commercial power grid that has
fuelled the electric and electronic product economy. Batteries,
induction, or energy scavenging from the local environment can
provide power for mobile devices; but chemical-based battery
technology continues to be the optimal choice. If you have
smoke detectors in your home, which are now inexpensive
enough to put in most rooms, you will go through the yearly
ritual of changing batteries to ensure reliability, and will
immediately resonate with the problems facing pervasive
computing. For many mobile or embedded applications, such as
sensor systems, power can be conserved through judicious
control of its active operation. However building distributed
systems using conventional software tools leaves these issues
unaddressed, and the power consequences for creating software
abstractions or using higher-level languages such as Java, may
not be exposed to the programmers.
As each of the basic components required for Ubiquitous
computing have fallen into place, the limitations on success
have moved to the higher levels of abstraction. Low power radio
technologies and common standards exist, but individual
standards typically address a specific usage model and, when
taken individually, do not typically present the best overall
solution. Radio hierarchies [8], which aggregate the capabilities
of any number of individual solutions, offer a more complete
and advanced capability, but will require software engineering
work to effectively abstract the idiosyncrasies of the various
underlying technologies to present a uniform interface for
applications. At the basic level, this technique consists of
understanding how the low-power Bluetooth standard could

augment standard WiFi network operation, offering a lower-
power solution with the same long-range and high-bandwidth
capabilities.
Another component that plays a crucial role in the evolution of
ubiquitous systems is the display. Early portable LCD displays,
although low power, were monochrome and low resolution. It
was hard to meet the ideals of device ‘invisibility’ when the
medium used for information transfer was well below the
necessary readability threshold. Displays have steadily
increased in quality: Color is now standard, and the resolution
well above that used by television – a metric for large-scale
acceptability. Quality displays are even appearing on
inexpensive cell phones as the current ~600 million units annual
sale is driving down cost, and driving-up technical competition
on a feature-by-feature basis. However, applications are still
written with a particular display format in mind and do not have
the ability to transform their layout from one set of display
dimensions to another. As wireless capabilities become more
prevalent on all devices, the use of a device’s display may no
longer be limited to the device it is physically attached to. A
computer with an impoverished display can now consider
broadcasting its display pixels across a wireless link to a
computer with better screen quality. The challenge presented
here is how to build design tools that can abstract away the size
of the display at the time an application is written.
Location technologies were an integral part of the vision of
early Ubiquitous Computing systems. At that time unique
location finding technologies, such as the Active Badge [15] had
to be devised in order to provide in-building location services.
However, with the advent of standards such as 802.11b/g
location, to some reasonable level of accuracy, can be
determined using the underlying properties of the wireless
system [1]. Even Bluetooth provides this capability by the very
nature that it is a short-range wireless technology, in most
implementations not extending more than 12 feet. Ambiguities
about what is close, due to walls and other physical partitions,
can be removed if a comprehensive model of the environment is
known ahead of time (sometimes called the world model). The
use of location and other environmental knowledge in
ubiquitous systems is usually referred to as being context-aware,
and holds promise to simplify the interfaces we present to our
mobile users, adapting them to the current situation. However,
most computerized organizational support systems do not take
advantage of location, and this presents an opportunity for
future system designers.
In the remainder of this paper we focus in more detail on the
challenges for ubiquitous computing systems, the progress that
has been made towards a solution, and the software engineering
work that still needs to be done by our community. We will
conclude this paper with a summary of the most salient issues
that need attention in this area.

2. FACING THE CHALLENGES
There are many challenges facing the design of successful
ubiquitous computing systems. Here we focus on four of the
issues for which progress is being made and therefore represent
a challenge worth undertaking: power management, wireless
discovery, user interface adaptation, and location aware
computing.

2.1 Power Management
The power consumption of Ubiquitous computing devices can
be divided into three main components: processing, storage, and
communication. For each of these categories, there is usually a
technique for controlling power that involves “turning a knob”
for a given component: reducing power by decreasing speed,
range, or capacity by simply lowering duty cycle or an
operating parameter of the device. For example, it is quite easy
to lower the power of a wireless transmitter by reducing the
output power, effectively reducing its range. Alternatively, it
can be highly effective to control power by switching between
heterogeneous subsystems within a conceptual element of the
system: e.g., to switch between radio technologies such as
Bluetooth and WiFi for wireless communication. However, this
technique, which can offer an order-of-magnitude improvement
in power consumption, requires more software support to deal
with the accompanying heterogeneous software interfaces to
these systems.
Processing is a highly variable component for a ubiquitous
computing platform – its requirements can very from very little
for simple monitor-and-wait applications to extremely high for
computationally intensive tasks such as running a neural net.
Within a single processor, it is possible to control the power
consumption by either selectively deactivating individual
blocks, like the multiplier, when they are not in use or lowering
the operating voltage to slow the part down and also reduce the
energy per operation using a technique known as DVM [7].
Beyond this, it can be highly effective to control power
consumption by utilizing multiple kinds of processors within a
system: for example, a full-function processor for the main
computation, an embedded microcontroller for sensor
monitoring, and a network processor for processing network
packets. In fact, many systems already possess multiple
processors, e.g. the firmware in a wireless card, but their
functions are largely hidden, reducing their overall
effectiveness. The software engineering challenge is figuring
out a way to expose the processing components of individual
subsystems for general use, allowing a system to “push down”
some operations to the sub-processor when beneficial;
furthermore, this would need to be done in a flexible manner, so
that the software language used is not tied to the specific
components, allowing a write-one run-anywhere policy for such
hierarchical processor systems.
Wireless interfaces present a similar challenge to that of
multiple processors. WiFi, Bluetooth, Zigbee, and Ultra Wide
Band (UWB) are all either existing or up-and-coming radio
standards with widely varying capabilities and characteristics.
Each one has various power-control and performance settings,
for example the basic transmit strength or listen duty cycle, but
an order-of-magnitude performance gain is possible by utilizing
multiple radios in one system because each technology is
individually targeted at a specific usage model. For example,
WiFi is suited for in-home wireless Internet browsing, while
Bluetooth is better suited for low-power devices such as cell-
phones. Often, the overall optimal solution will require
combining multiple radio systems into one device: organizing
them as a wireless hierarchy [8], that, for example, capitalizes
on the low energy-per-bit of WiFi, but can rely on the low
standby power of Bluetooth. For the implementation, each radio
system encompasses different characteristics, connection model,

and programming interface. The software engineering challenge
is to provide a layer of abstraction that effectively offers the
overall best service to the platform without unnecessarily
complicating the higher-level interfaces. For example, a way to
offer the power saving benefits of using Bluetooth within the
context of an in-home WiFi network, even though a single
Bluetooth node will not reach though an entire house.
Local storage is another sub-system that can consume
considerable power in a Ubiquitous system. There are many
different kinds of storage media that are available for such
systems: physical disks, flash, DRAM, SRAM integrated with
the processor, etc… Similar to the processor- and wireless-
subsystems, each kind of storage presents a different power
profile to the system. Flash, for example, is very good for idle
and read power, but is considerably lower density than a
physical disk and is very slow for writing. Similarly, SRAM is
very low power but at a fraction of the density of DRAM.
Likewise, the software engineering challenge is to provide
flexible access to storage capabilities without over complication.
One concrete example is managing the power consumption of a
full-fledged operating system like Linux in the embedded
environment. Although it provides a great wealth of capabilities,
its operational memory footprint will be considerably larger
than a purely embedded operating system like TinyOS [5]. This
operational footprint is important because if it was small enough
to fit in the system’s available SRAM, the system could power-
down its DRAM during an extended sleep operation while still
offering quick-wakeup capability (i.e., without having to
reboot).
These three basic components all have great potential for power
optimization at the considerable risk of overcomplicating the
software interfaces. The reason systems like Java, Linux, and
TCP/IP networking have become so popular is that they are
uniform: software engineers don’t need to do something
different for different environments. True, they don’t always
live up to the “write once, run anywhere” mantra, but they at
least offer a “learn once, use anywhere” environment, which
greatly increases their potential. The challenge with these
heterogeneous systems, which offer a complex array of
capabilities and trade-offs, is to generate a similar uniform
interface that programmers can utilize. There are obviously
other considerations with power, as described briefly in the
following section, but the ability to effectively manage the
applications running on embedded platforms is a key enabling
step.

2.2 Limitations of wireless discovery
Another significant problem facing emerging Ubiquitous and
Pervasive computing systems is the management of the many
small computing nodes comprising a large, complex system. In
the early days of computers, there were many people using one
computer; then, with the PC revolution, we reached an era of
one person relating to one computer; now, starting with the
introduction of cell-phones and other portable electronic
devices, we now have multiple computing devices associated
with each person. As the number of computers per person
increases, the conceptual, physical, and virtual management of
these devices becomes a problem. Going forward, embedding
processing in everyday objects, such as a coffee cup or chair,

exasperates this problem: drastically increasing the number of
computing devices that must somehow be managed.
One major problem facing any large collection of small devices
is just a basic understanding of what exists: if I know something
exists, how do I find it, or, if I have a collection of devices, how
do I know what they are? Often, people have trouble keeping
track of just their keys and cell-phones – imagine this problem
on a grand scale where there are hundreds of devices around the
house waiting to be lost, found, and eventually used! One
solution to this problem is to release objects from a specific
designation, and treat a coffee cup as just a coffee cup, instead
of a specific coffee cup. This shift, which will make it easier to
juggle a multitude of devices in the physical space, raises a
challenge for software systems that now must be able to interact
with many devices that have no unique individual address or
identity. Typically, computer systems are addressed by a unique
name, IP address, or MAC address – a convenience that just
may not exist in a deeply embedded environment.
Several emerging technologies, such as UPnP [12] and
Rendezvous [10], specifically aim to make it easier to manage
multiple devices in the home environment. For example, they
aim to make it easy to bring home a new device, such as a
printer or stereo component, and hook it up to your home
network: You bring it home, plug it in, and use your desktop PC
or smart TV to coordinate its actions with other devices. By
utilizing the infrastructure supplied by a coherent home network
and desktop PC, this system makes it easy to connect devices –
however, requiring manual connection and configuration would
quickly become onerous for a large number of very small
devices. So, although these technologies work for individual
devices that can be recognized and handled by people, it is not
clear how they will adapt to the challenges outlined in the
previous paragraph.
At a basic level, Ubiquitous and/or Pervasive devices will not
always be plugged into a wired network, requiring integrated
wireless discovery techniques that raise significant questions
about network integration. One significant problem in this space
is the basic neighbor’s printer problem: how do you integrate a
new wireless printer into your home network without
accidentally incorporating your neighbor’s printer, or giving
your neighbor access to your device. Basically, wireless
networks are virtual in their physical topology – it is easy for
them to co-exist in the same space while presenting a different
logical construct to the user – a problem that is not nearly as
common with wired networks. One solution is to require
physical interaction with your new device, maybe temporarily
plugging in a USB cable to initially configure the setup, or
maybe you assume/hope that your neighbor bought a different
model printer than you, making it easy to discern. But in the
end, this simple scenario of bringing home a new device with
“easy to use” wireless networking raises many fundamental
challenges about how these devices are connected and
associated. Now, just imagine this problem for a hundred small
embedded computing devices!
The shift from single devices with well-known names and easy
to discern network connections to a multiplicity of semi-
anonymous objects arbitrarily connected to other nearby objects,
presents a significant challenge for both software engineering
and the basic supporting technologies. Systems will need to be

mode intelligent and adaptable, automatically figuring out
which devices are appropriate for any given set of interactions,
and which devices “belong” in a particular space. Of course, on
top of this there is also the quintessential problem of power
management: how can you find and replace all the batteries
needed to power the multitude of devices in an environment!
Solutions to these problems must balance ease of use, privacy,
security, cost, maintainability, and any number of additional
constraints, making them anything but trivial.

2.3 User Interface Adaptation
A characteristic of Ubiquitous Computing systems is that they
integrate a wide variety of devices from very tiny sensors, to
palm, notebook and workstation computers, each with very
different display sizes. From a system designer’s point of view,
applications need to operate effectively in this heterogeneous
environment, and the users must be able to gain control of each
component unencumbered by the physical difficultly imposed
by size. For example, tiny devices imply tiny displays, and even
the best UI design at this scale requires the user to navigate a
series of terse menus. The problem is illustrated by typical
experiences with PDAs, often loaded with features but never
used because they are buried in the complexity of the interface.
A colleague recently recounted an anecdote about beaming a
phone number between two Palm devices (while under some
time pressure) using an Infrared link, and in the end giving up,
instead resorting to writing the number on a post-it note, and
sticking on the recipient’s PDA.

Figure 1: UI sharing between a cell phone and a laptop

computer, across a short range wireless link.
When users need access to information contained in a computer,
the most effective interfaces are those well adapted to people.
Long before computers existed many mechanical and
informational tools were honed based on this principle, for
example, books can be manufactured at any scale, but
paperbacks are the convenient size they are because they are
optimized for readability and portability. When building small
devices for Ubiquitous computing applications, a means to adapt
the interface to a more person-oriented size can make the
difference necessary to cross the usability threshold. Consider
the cell phone, perhaps the most successful Ubiquitous
Computing device to date, but limited by its size (and the trend
to keep building them smaller), the display is also constrained.
But by using a local wireless-connection to a more capable
device, it is possible to access data on the phone using a familiar
web browser interface on a full-sized desktop display. For
example, in an extension of Intel’s Personal Server project [13]

in figure 1, the photos taken by the phone can be browsed and
selected on a large display for transfer to the PC, though a
wireless link.
To take full advantage of this capability, applications written for
use with the phone display need to be able to adapt to a larger
display when it becomes available. There are also occasions
when information flow from applications written for servers
with large displays would like to shrink their output for display
on a smaller device. This situation occurs today with WAP
based phones that wish to access WWW content providers such
as yahoo.com. Current approaches detect the type of device in
use and connect to a server capable of generating the required
graphic elements on the small display, but to make use of this
model the content for the smaller display size needs to be
individually crafted.
A more flexible approach would allow application writers to
generate UIs based on an abstract definition of the user interface
and in combination with knowledge of the capabilities of the
target display, generate the user interface components on the fly.
In an exploratory toolkit called PUC [6], four components are
needed to build such a system, a 1) user interface specification
language 2) two-way control protocol, providing an abstracted
communication channel between the application and user
interface, 3) appliance adaptors, allowing the control protocol to
be translated into the primitives available on the target device,
and 4) the graphic user interface generator. Other toolkit
examples are SUPPLE [3] and iCrafter [9]. Despite the success
of this work it is a hard to create the building blocks that will
result in widespread use and be adopted by product designers as
a standard.
For any software product, the user interface is the one piece of
the system that is placed in full view of the customers, and may
make or break the business depending on its usability. For
dynamic UIs, designers would be uncertain of how their
application will manifest itself on the various screen sizes used
by their customers. These problems are similar to those facing
the designers of websites requiring the presentation to look good
on a variety of browser’s screens. Often, the lowest common
denominator ends up defining the result; however, software
tools that clarify the result across a common range of target
platforms can mitigate this issue. The up side has great potential
as the richer the display, the richer the automatically generated
UI, and potentially the better the user experience. In Ubiquitous
Computing environments, the range of target screen sizes is far
greater than typically found in the PC world; therefore, if the
software products continue to work in these environments, the
market size and potential revenues will be considerably larger.
However, significant software engineering hurdles still remain
in creating standards (the HTML equivalent for adaptable UIs)
and the basic mechanisms to generate and display content to the
user.

2.4 Location Aware Computing
One of the distinguishing features of Ubiquitous Computing
over conventional distributed computing is the use of location to
augment the data services available. Unlike the Internet in
which a server is typically unaware of the location of the client,
when computing becomes embedded into the local environment,
interaction can be customized to improve the result. For
example, a query about the multimedia equipment nearby can be

automatically qualified by the current location and return
information that is relevant to that room, rather than all the
facilities available in the building. Likewise information
accessed at a particular location on one occasion can be
remembered and potentially offered to others who are about to
make similar queries, thus opening up options that some people
may have been unaware of.
The use of location context goes beyond just knowing where
you are, but can take into account ‘who’ is with you, further
building contextual clues about the activity undertaken at that
time. A system supporting a conference room application might
automatically provide electronic links on an electronic
whiteboard referencing all the documents that were accessed by
that group on the previous occasion they met. Likewise,
messages with a low priority might not be delivered with an
audible notification to a laptop, if the system is aware that other
people are nearby and a meeting is likely to be in progress.
In universities, experimental context-aware toolkits [2] have
been built to facilitate the design of context-based systems.
However these tools have not seen widespread adoption. One
possible reason is the uncertainty of location estimates: it may
not be possible for a system to know exactly where something
is, so how does it describe the range of possible locations? To
address these concerns, research at the University of
Washington [4] created the Location Stack as a means of
working with several sources of location information at once,
and fusing the data together in a way that improved the overall
accuracy and allows applications to understand the error
distribution involved with the location estimate.
There are clear indications that location-based data enables
valuable applications. ATT’s M-mode service has a feature to
allow its clients to make location queries such as finding the
nearest restaurants, based on location data inherent to the
current cell tower in use. The most successful search engine,
Google, has recently added local search to their search engine,
allowing a query to be qualified by location. At present, a user
is requested to type in a qualifying string for the location
(assuming they know it), but this service is ripe for extensions
based on GPS and other location automation technology.
Successful adoption of these services in the metropolitan area
may well provide motivation for system designers to use these
techniques at the local level, in much the same way that global
web searches, are being complimented with Google Desktop in
order to have a similar service run on the file system of a
personal machine.
To date, the tools for location-based applications have not been
available on mass to the industry. Although we now know how
to turn wireless infrastructure into location-finding systems,
these mechanisms have not filtered into the standard system
building tools. A challenge for the community is to take these
techniques and turn them into location-based APIs at the
platform level, which can then be accessed on a wide variety of
devices and utilize a variety of location technologies.

3. Conclusion
Many of the visions of computer science such as artificial
intelligence, image recognition, and natural language
interaction, have proved extremely difficult to achieve. The
impressive calculations performed by a computer are far

removed from the kind of open-ended problems presented by
real world situations, and are not readily applied to the solution.
Ubiquitous and Pervasive Computing were in some senses a
way of taming real environments by placing embedded
computation directly in the artifacts that are needed for physical
work, and using orchestrated wireless communication to build a
fully integrated system, with greater user value through
augmentation. However, even this simplified model of the world
presents difficult problems that are not easily resolved. Early on
the issues related to the inadequacies of fundamental
components such as displays, low-power processors, high-
capacity memories or wireless standards. More recently the
limitations are associated with high-level system issues, such as
power management, the co-ordination of wireless services,
application user interface adaptation or the creation of generic
capabilities to allow developers access to contextual
information.
For example, power management continues to be a problem for
ubiquitous systems that involve mobility, or utilize disconnected
operation, which by contrast is not an issue for infrastructural
computing. Many energy conservation techniques are now well
understood and improve the battery lifetime of mobile systems,
but power management still needs careful consideration.
Although embedded system designers know these techniques,
the tools to allow them to be used by system software architects
at a high level of abstraction, through conventional
programming libraries, are not available. As with all the
solutions we find in the ubiquitous computing arena, until they
are integrated into standard tools and widely adopted, we will
not see the impact that could be achieved.
In this short paper we have focused on issues that are directly
related to Ubiquitous Computing, but it should also be pointed
out that many of the problems associated with distributed
systems in general are also embodied in this area. The design of
distributed systems is still hard and when multiplied by a larger
number of heterogeneous computers connected by wireless
networks become commensurately more complex. Just as in
distributed systems, achieving the desired result when all
components are fully operational is not necessarily difficult, but
when failures occur automating the diagnosis and recovering
from the fault is a much bigger problem, and usually requires
the users to take some part in the process. However, in
ubiquitous and pervasive computing the applications are most
likely aimed at diverse work practices with the computation
hidden from view, and thus unless the maintenance of these
systems can be automated the deployment will remain limited to
domains in which the help from an expert is readily available.

ACKNOWLEDGMENTS
The authors wish to thank Intel Corporation for its support.

REFERENCES
[1] Bahl, P.; and Padmanabhan, V. N.,“RADAR: An In-

Building RF-based User Location and Tracking System”
IEEE Infocom 2000, volume 2, pages 775-784, March.
2000

[2] Dey, A., K.; Salber, D.; and Abowd, G., D., “A
Conceptual Framework and a Toolkit for Supporting the

Rapid Prototyping of Context-Aware Applications”,
Human-Computer Interaction (HCI) Journal, Vol. 16, 2001

[3] Gajos, K., Weld, D. “SUPPLE: Automatically Generating
User Interfaces”, in Intelligent User Interfaces (IUI) ’04.
Funcha , Portugal, 2004.

[4] Hightower, J.; Brumitt, B., and Borriello, G., "The
Location Stack: A Layered Model for Location in
Ubiquitous Computing," in Proceedings of the 4th IEEE
Workshop on Mobile Computing Systems & Applications
(WMCSA 2002), (Callicoon, NY), pp. 22-28, June 2002.

[5] Levis, P.; Madden, S.; Gay, D.; Polastre, J.; Szewczyk, R.;
Woo, A; Brewer, E.; and Culler, D., “The Emergence of
Networking Abstractions and Techniques in TinyOS”,
Proceedings of the First USENIX/ACM Symposium on
Networked Systems Design and Implementation, 2004.

[6] Nichols, J.; Myers, B., A.; and Litwack, K., "Improving
Automatic Interface Generation with Smart Templates",
Intelligent User Interfaces (IUI) Funchal, Portugal. pp 13-
16, Jan. 2004.

[7] Pering, T.; Burd, T.; and Brodersen, R., W., “Voltage
scheduling in the lpARM microprocessor system” In
Proceedings of the 2000 International Symposium on Low
Power Electronics and Design, pages 96-101, July 2000

[8] Pering. T.; Raghunathan, V.; Want, R. , “Exploiting radio
hierarchies for power-efficient wireless discovery and
connect setup”, In Proc. of the 18th International
Conference on VLSI Design, January 2005.

[9] Ponnekanti, S., R.; Lee, B.; Fox, A.; Pat Hanrahan, and
Terry Winograd, “ICrafter: A Service Framework for
Ubiquitous Computing Environments.” In Ubicomp 2001,
pages 56-75. Georgia, Atlanta, September-October 2001.

[10] Rendezvous, Apple’s automatic discovery mechanism for
computers, devices, and services on an IP network.
http://developer.apple.com/macosx/rendezvous/

[11] Schilit, B.; Adams, N.; Want, R., "Context-Aware
Computing Applications”, 1st Annual Workshop on Mobile
Computing Systems and Applications (WMCSA), Santa
Cruz, Dec 1994.

[12] UPnP, “Understanding Universal Plug and Play”,
Microsoft white paper available at http://www.upnp.org

[13] Want, R.; Pering, T.; Danneels, G.; Kumar, M; Sundar, M.;
and Light, J., "The Personal Server: changing the way we
think about ubiquitous computing", Proceedings of
Ubicomp 2002: 4th International Conference on Ubiquitous
Computing, Springer LNCS 2498, Goteborg,
Sweden, pp194-209, Sept 30th-Oct 2nd, 2002.

[14] Want. R.; Schilit, B.; Adams, N.; Gold, R.; Goldberg, D.;
Petersen, K.; Ellis, J.; Weiser, M., "An Overview of the
Parctab Ubiquitous Computing Experiment", IEEE
Personal Communications, Vol 2. No.6, pp28-43 December
1995.

[15] Want, R.; Hopper A.; Falcao, V.; Gibbons, J., "The Active
Badge Location System", ACM Transactions on Office
Information Systems, vol. 10. No. 1, pp91-102, Jan 1992.

[16] Weiser, M., "The Computer for the 21st Century",
Scientific American, Vol. 265 No. 3, pp94-100, September
1991

http://sandbox.xerox.com/want/papers/ubi-sciam-sep91.pdf

	INTRODUCTION
	FACING THE CHALLENGES
	Power Management
	Limitations of wireless discovery
	User Interface Adaptation
	Location Aware Computing

	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

