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ABSTRACT 
The terms Ubiquitous and Pervasive computing were first 
coined at the beginning of the 90's, by Xerox PARC and IBM 
respectively, and capture the realization that the computing 
focus was going to change from the PC to a more distributed, 
mobile and embedded form of computing. Furthermore, it was 
predicted by some researchers that the true value of embedded 
computing would come from the orchestration of the various 
computational components into a much richer and adaptable 
system than had previously been possible. Now some fifteen 
years later, we have made progress towards these aims. The 
Hardware platforms used to implement these systems 
encapsulate significant computation capability in a small form-
factor, consume little power and have a small cost. However, the 
system software capabilities have not advanced at a pace that 
can take full advantage of this infrastructure. This paper will 
describe where software and hardware have combined to enable 
ubiquitous computing, where these systems have limitations and 
where the biggest challenges still remain. 

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and Embedded Systems, Microprocessor/microcomputer 
applications, Smartcards. 

General Terms 

Design, Management, Reliability, Standardization 

Keywords 

Ubiquitous & Pervasive Computing, Power Management, 
Wireless discovery, User Interface Adaptation, Context-Aware. 

1. INTRODUCTION 
Many of the tasks that are undertaken in everyday work 
practices can be augmented by some form of computation; 
however, beyond the digital office applications, such as world 

processing and spreadsheets, it is much more difficult to 
understand how to apply computation in a form that is readily 
appropriate for the task. For instance, a nurse may find that the 
traditional pen & clipboard approach to taking notes while 
talking with a patient may be better suited to their interaction 
than turning away to type at a conventional PC, despite the 
resulting inefficiency of needing to re-enter it into an archival 
electronic form later on. The ideals of Ubiquitous Computing, a 
term first used by Mark Weiser [16] at Xerox PARC in 1988, 
attempt to understand how to integrate computation with the 
physical world in a way that blends in so completely that it 
becomes unnoticeable, a property often referred to as 
“invisibility”. One of his analogues used to convey the idea is 
our interaction with ink and the printed word: if a page is well 
presented we rarely dwell on the printing technology, the ink or 
the font, but instead are rapidly drawn into the information that 
is being conveyed. However, current computer systems are 
rarely this transparent and often force the users to dwell on 
issues that are purely related to the processing platform, not the 
application that is being supported. Faults are rarely simple to 
diagnose and any system that involves several cooperating 
computers usually requires specialist knowledge for its set-up 
before any work can begin. 
Fifteen years ago, some of the challenges for Ubiquitous 
Computing were more at the component level than at the system 
level. The performance available in PCs was determined by the 
capabilities of the Intel 486 processor, while low-power 
microcontrollers were only good enough for ‘washing machine’ 
class applications and crude handheld devices. Embedded 
processors lacked the horsepower, or peripheral support, that is 
needed to solve real world problems. Also, wireless networking, 
a critical component for interconnecting the mobile components 
of a ubiquitous system was in its infancy and there were no 
widely adopted wireless standards. 
Early attempts to integrate computing into a more mobile and 
wirelessly connected environment such as Xerox’s Parctab, the 
first palm sized context-aware computer [14], were based on 
system-level design principles that allowed researchers to ‘time 
travel’ into a future use model, but traded-off system 
communication for computation and storage. For example, the 
Parctab system allowed complex applications to be run in 
remote workstations: the mobile devices were designed as 
wireless ‘dumb’ displays, sending pen and button events 
through a diffuse infrared network, while responses were 
received as graphic updates for the display. An additional 
benefit of this computational offloading was that the power 
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budget in the mobile devices became manageable, and they 
remained small. Currently, the important difference between 
these heavily networked systems and those using today’s 
technologies is that the trade-off between communication, 
processing, and storage in these systems has shifted and is 
continuing to shift in favor of more computation and storage in 
the mobile system components, allowing lower interaction 
latency and more resilience to disconnected operation. 
However, software engineering techniques have not as yet 
adapted to offer an easy way for developers to balance these 
considerations, highlighting an area for future progress. 
Now with Intel XScale class processors available at clock rates 
reaching upwards of 0.6GHz, flash memory subsystems 
exceeding 1GB, and power budgets of only 500mW, it becomes 
practical to run complex calculations locally and only use the 
communication channel to capture ephemeral data, control other 
systems, to send messages, or to convey the results of a 
calculation. Furthermore, the growth of the storage component 
is exponentially outstripping the bandwidth improvements in the 
communication channel. Thus from a pragmatic software 
engineering perspective, preloading content in mobile devices 
will become the favored design approach. At this time, it is still 
important to carefully consider what needs to be preloaded, but 
as the exponential storage curve continues upward, everything 
that might be needed while mobile, will be preloaded as a matter 
of course and the algorithms can become less selective. 
Although systems have continually been improving, power has 
always been a thorn in the side of the Ubiquitous computing 
vision. Since computation as we know it is based on electronic 
devices, Ubiquitous computing also implies the ubiquitous need 
for power. For fixed infrastructure, wired power suffices, and it 
is the general reliability of the commercial power grid that has 
fuelled the electric and electronic product economy.  Batteries, 
induction, or energy scavenging from the local environment can 
provide power for mobile devices; but chemical-based battery 
technology continues to be the optimal choice. If you have 
smoke detectors in your home, which are now inexpensive 
enough to put in most rooms, you will go through the yearly 
ritual of changing batteries to ensure reliability, and will 
immediately resonate with the problems facing pervasive 
computing. For many mobile or embedded applications, such as 
sensor systems, power can be conserved through judicious 
control of its active operation. However building distributed 
systems using conventional software tools leaves these issues 
unaddressed, and the power consequences for creating software 
abstractions or using higher-level languages such as Java, may 
not be exposed to the programmers.  
As each of the basic components required for Ubiquitous 
computing have fallen into place, the limitations on success 
have moved to the higher levels of abstraction. Low power radio 
technologies and common standards exist, but individual 
standards typically address a specific usage model and, when 
taken individually, do not typically present the best overall 
solution. Radio hierarchies [8], which aggregate the capabilities 
of any number of individual solutions, offer a more complete 
and advanced capability, but will require software engineering 
work to effectively abstract the idiosyncrasies of the various 
underlying technologies to present a uniform interface for 
applications. At the basic level, this technique consists of 
understanding how the low-power Bluetooth standard could 

augment standard WiFi network operation, offering a lower-
power solution with the same long-range and high-bandwidth 
capabilities.  
Another component that plays a crucial role in the evolution of 
ubiquitous systems is the display. Early portable LCD displays, 
although low power, were monochrome and low resolution. It 
was hard to meet the ideals of device ‘invisibility’ when the 
medium used for information transfer was well below the 
necessary readability threshold. Displays have steadily 
increased in quality: Color is now standard, and the resolution 
well above that used by television – a metric for large-scale 
acceptability. Quality displays are even appearing on 
inexpensive cell phones as the current ~600 million units annual 
sale is driving down cost, and driving-up technical competition 
on a feature-by-feature basis. However, applications are still 
written with a particular display format in mind and do not have 
the ability to transform their layout from one set of display 
dimensions to another. As wireless capabilities become more 
prevalent on all devices, the use of a device’s display may no 
longer be limited to the device it is physically attached to. A 
computer with an impoverished display can now consider 
broadcasting its display pixels across a wireless link to a 
computer with better screen quality. The challenge presented 
here is how to build design tools that can abstract away the size 
of the display at the time an application is written. 
Location technologies were an integral part of the vision of 
early Ubiquitous Computing systems. At that time unique 
location finding technologies, such as the Active Badge [15] had 
to be devised in order to provide in-building location services. 
However, with the advent of standards such as 802.11b/g 
location, to some reasonable level of accuracy, can be 
determined using the underlying properties of the wireless 
system [1]. Even Bluetooth provides this capability by the very 
nature that it is a short-range wireless technology, in most 
implementations not extending more than 12 feet. Ambiguities 
about what is close, due to walls and other physical partitions, 
can be removed if a comprehensive model of the environment is 
known ahead of time (sometimes called the world model). The 
use of location and other environmental knowledge in 
ubiquitous systems is usually referred to as being context-aware, 
and holds promise to simplify the interfaces we present to our 
mobile users, adapting them to the current situation. However, 
most computerized organizational support systems do not take 
advantage of location, and this presents an opportunity for 
future system designers. 
In the remainder of this paper we focus in more detail on the 
challenges for ubiquitous computing systems, the progress that 
has been made towards a solution, and the software engineering 
work that still needs to be done by our community. We will 
conclude this paper with a summary of the most salient issues 
that need attention in this area. 

2. FACING THE CHALLENGES 
There are many challenges facing the design of successful 
ubiquitous computing systems. Here we focus on four of the 
issues for which progress is being made and therefore represent 
a challenge worth undertaking: power management, wireless 
discovery, user interface adaptation, and location aware 
computing. 



2.1 Power Management 
The power consumption of Ubiquitous computing devices can 
be divided into three main components: processing, storage, and 
communication. For each of these categories, there is usually a 
technique for controlling power that involves “turning a knob” 
for a given component: reducing power by decreasing speed, 
range, or capacity by simply lowering duty cycle or an 
operating parameter of the device. For example, it is quite easy 
to lower the power of a wireless transmitter by reducing the 
output power, effectively reducing its range. Alternatively, it 
can be highly effective to control power by switching between 
heterogeneous subsystems within a conceptual element of the 
system: e.g., to switch between radio technologies such as 
Bluetooth and WiFi for wireless communication. However, this 
technique, which can offer an order-of-magnitude improvement 
in power consumption, requires more software support to deal 
with the accompanying heterogeneous software interfaces to 
these systems. 
Processing is a highly variable component for a ubiquitous 
computing platform – its requirements can very from very little 
for simple monitor-and-wait applications to extremely high for 
computationally intensive tasks such as running a neural net. 
Within a single processor, it is possible to control the power 
consumption by either selectively deactivating individual 
blocks, like the multiplier, when they are not in use or lowering 
the operating voltage to slow the part down and also reduce the 
energy per operation using a technique known as DVM [7]. 
Beyond this, it can be highly effective to control power 
consumption by utilizing multiple kinds of processors within a 
system: for example, a full-function processor for the main 
computation, an embedded microcontroller for sensor 
monitoring, and a network processor for processing network 
packets.  In fact, many systems already possess multiple 
processors, e.g. the firmware in a wireless card, but their 
functions are largely hidden, reducing their overall 
effectiveness.  The software engineering challenge is figuring 
out a way to expose the processing components of individual 
subsystems for general use, allowing a system to “push down” 
some operations to the sub-processor when beneficial; 
furthermore, this would need to be done in a flexible manner, so 
that the software language used is not tied to the specific 
components, allowing a write-one run-anywhere policy for such 
hierarchical processor systems. 
Wireless interfaces present a similar challenge to that of 
multiple processors. WiFi, Bluetooth, Zigbee, and Ultra Wide 
Band (UWB) are all either existing or up-and-coming radio 
standards with widely varying capabilities and characteristics. 
Each one has various power-control and performance settings, 
for example the basic transmit strength or listen duty cycle, but 
an order-of-magnitude performance gain is possible by utilizing 
multiple radios in one system because each technology is 
individually targeted at a specific usage model. For example, 
WiFi is suited for in-home wireless Internet browsing, while 
Bluetooth is better suited for low-power devices such as cell-
phones. Often, the overall optimal solution will require 
combining multiple radio systems into one device: organizing 
them as a wireless hierarchy [8], that, for example, capitalizes 
on the low energy-per-bit of WiFi, but can rely on the low 
standby power of Bluetooth. For the implementation, each radio 
system encompasses different characteristics, connection model, 

and programming interface. The software engineering challenge 
is to provide a layer of abstraction that effectively offers the 
overall best service to the platform without unnecessarily 
complicating the higher-level interfaces. For example, a way to 
offer the power saving benefits of using Bluetooth within the 
context of an in-home WiFi network, even though a single 
Bluetooth node will not reach though an entire house.  
Local storage is another sub-system that can consume 
considerable power in a Ubiquitous system. There are many 
different kinds of storage media that are available for such 
systems: physical disks, flash, DRAM, SRAM integrated with 
the processor, etc… Similar to the processor- and wireless- 
subsystems, each kind of storage presents a different power 
profile to the system.  Flash, for example, is very good for idle 
and read power, but is considerably lower density than a 
physical disk and is very slow for writing. Similarly, SRAM is 
very low power but at a fraction of the density of DRAM. 
Likewise, the software engineering challenge is to provide 
flexible access to storage capabilities without over complication. 
One concrete example is managing the power consumption of a 
full-fledged operating system like Linux in the embedded 
environment. Although it provides a great wealth of capabilities, 
its operational memory footprint will be considerably larger 
than a purely embedded operating system like TinyOS [5]. This 
operational footprint is important because if it was small enough 
to fit in the system’s available SRAM, the system could power-
down its DRAM during an extended sleep operation while still 
offering quick-wakeup capability (i.e., without having to 
reboot).  
These three basic components all have great potential for power 
optimization at the considerable risk of overcomplicating the 
software interfaces. The reason systems like Java, Linux, and 
TCP/IP networking have become so popular is that they are 
uniform: software engineers don’t need to do something 
different for different environments.  True, they don’t always 
live up to the “write once, run anywhere” mantra, but they at 
least offer a “learn once, use anywhere” environment, which 
greatly increases their potential. The challenge with these 
heterogeneous systems, which offer a complex array of 
capabilities and trade-offs, is to generate a similar uniform 
interface that programmers can utilize. There are obviously 
other considerations with power, as described briefly in the 
following section, but the ability to effectively manage the 
applications running on embedded platforms is a key enabling 
step.  

2.2 Limitations of wireless discovery 
Another significant problem facing emerging Ubiquitous and 
Pervasive computing systems is the management of the many 
small computing nodes comprising a large, complex system. In 
the early days of computers, there were many people using one 
computer; then, with the PC revolution, we reached an era of 
one person relating to one computer; now, starting with the 
introduction of cell-phones and other portable electronic 
devices, we now have multiple computing devices associated 
with each person. As the number of computers per person 
increases, the conceptual, physical, and virtual management of 
these devices becomes a problem. Going forward, embedding 
processing in everyday objects, such as a coffee cup or chair, 



exasperates this problem: drastically increasing the number of 
computing devices that must somehow be managed. 
One major problem facing any large collection of small devices 
is just a basic understanding of what exists: if I know something 
exists, how do I find it, or, if I have a collection of devices, how 
do I know what they are? Often, people have trouble keeping 
track of just their keys and cell-phones – imagine this problem 
on a grand scale where there are hundreds of devices around the 
house waiting to be lost, found, and eventually used! One 
solution to this problem is to release objects from a specific 
designation, and treat a coffee cup as just a coffee cup, instead 
of a specific coffee cup.  This shift, which will make it easier to 
juggle a multitude of devices in the physical space, raises a 
challenge for software systems that now must be able to interact 
with many devices that have no unique individual address or 
identity. Typically, computer systems are addressed by a unique 
name, IP address, or MAC address – a convenience that just 
may not exist in a deeply embedded environment.  
Several emerging technologies, such as UPnP [12] and 
Rendezvous [10], specifically aim to make it easier to manage 
multiple devices in the home environment. For example, they 
aim to make it easy to bring home a new device, such as a 
printer or stereo component, and hook it up to your home 
network: You bring it home, plug it in, and use your desktop PC 
or smart TV to coordinate its actions with other devices. By 
utilizing the infrastructure supplied by a coherent home network 
and desktop PC, this system makes it easy to connect devices – 
however, requiring manual connection and configuration would 
quickly become onerous for a large number of very small 
devices. So, although these technologies work for individual 
devices that can be recognized and handled by people, it is not 
clear how they will adapt to the challenges outlined in the 
previous paragraph. 
At a basic level, Ubiquitous and/or Pervasive devices will not 
always be plugged into a wired network, requiring integrated 
wireless discovery techniques that raise significant questions 
about network integration. One significant problem in this space 
is the basic neighbor’s printer problem: how do you integrate a 
new wireless printer into your home network without 
accidentally incorporating your neighbor’s printer, or giving 
your neighbor access to your device. Basically, wireless 
networks are virtual in their physical topology – it is easy for 
them to co-exist in the same space while presenting a different 
logical construct to the user – a problem that is not nearly as 
common with wired networks. One solution is to require 
physical interaction with your new device, maybe temporarily 
plugging in a USB cable to initially configure the setup, or 
maybe you assume/hope that your neighbor bought a different 
model printer than you, making it easy to discern. But in the 
end, this simple scenario of bringing home a new device with 
“easy to use” wireless networking raises many fundamental 
challenges about how these devices are connected and 
associated. Now, just imagine this problem for a hundred small 
embedded computing devices! 
The shift from single devices with well-known names and easy 
to discern network connections to a multiplicity of semi-
anonymous objects arbitrarily connected to other nearby objects, 
presents a significant challenge for both software engineering 
and the basic supporting technologies. Systems will need to be 

mode intelligent and adaptable, automatically figuring out 
which devices are appropriate for any given set of interactions, 
and which devices “belong” in a particular space. Of course, on 
top of this there is also the quintessential problem of power 
management: how can you find and replace all the batteries 
needed to power the multitude of devices in an environment! 
Solutions to these problems must balance ease of use, privacy, 
security, cost, maintainability, and any number of additional 
constraints, making them anything but trivial. 

2.3 User Interface Adaptation  
A characteristic of Ubiquitous Computing systems is that they 
integrate a wide variety of devices from very tiny sensors, to 
palm, notebook and workstation computers, each with very 
different display sizes. From a system designer’s point of view, 
applications need to operate effectively in this heterogeneous 
environment, and the users must be able to gain control of each 
component unencumbered by the physical difficultly imposed 
by size. For example, tiny devices imply tiny displays, and even 
the best UI design at this scale requires the user to navigate a 
series of terse menus. The problem is illustrated by typical 
experiences with PDAs, often loaded with features but never 
used because they are buried in the complexity of the interface. 
A colleague recently recounted an anecdote about beaming a 
phone number between two Palm devices (while under some 
time pressure) using an Infrared link, and in the end giving up, 
instead resorting to writing the number on a post-it note,  and 
sticking on the recipient’s PDA. 

 
Figure 1: UI sharing between a cell phone and a laptop 

computer, across a short range wireless link. 
When users need access to information contained in a computer, 
the most effective interfaces are those well adapted to people. 
Long before computers existed many mechanical and 
informational tools were honed based on this principle, for 
example, books can be manufactured at any scale, but 
paperbacks are the convenient size they are because they are 
optimized for readability and portability. When building small 
devices for Ubiquitous computing applications, a means to adapt 
the interface to a more person-oriented size can make the 
difference necessary to cross the usability threshold. Consider 
the cell phone, perhaps the most successful Ubiquitous 
Computing device to date, but limited by its size (and the trend 
to keep building them smaller), the display is also constrained. 
But by using a local wireless-connection to a more capable 
device, it is possible to access data on the phone using a familiar 
web browser interface on a full-sized desktop display. For 
example, in an extension of Intel’s Personal Server project [13] 



in figure 1, the photos taken by the phone can be browsed and 
selected on a large display for transfer to the PC, though a 
wireless link. 
To take full advantage of this capability, applications written for 
use with the phone display need to be able to adapt to a larger 
display when it becomes available. There are also occasions 
when information flow from applications written for servers 
with large displays would like to shrink their output for display 
on a smaller device. This situation occurs today with WAP 
based phones that wish to access WWW content providers such 
as yahoo.com. Current approaches detect the type of device in 
use and connect to a server capable of generating the required 
graphic elements on the small display, but to make use of this 
model the content for the smaller display size needs to be 
individually crafted. 
A more flexible approach would allow application writers to 
generate UIs based on an abstract definition of the user interface 
and in combination with knowledge of the capabilities of the 
target display, generate the user interface components on the fly. 
In an exploratory toolkit called PUC [6], four components are 
needed to build such a system, a 1) user interface specification 
language 2) two-way control protocol, providing an abstracted 
communication channel between the application and user 
interface, 3) appliance adaptors, allowing the control protocol to 
be translated into the primitives available on the target device, 
and 4) the graphic user interface generator. Other toolkit 
examples are SUPPLE [3] and iCrafter [9]. Despite the success 
of this work it is a hard to create the building blocks that will 
result in widespread use and be adopted by product designers as 
a standard.  
For any software product, the user interface is the one piece of 
the system that is placed in full view of the customers, and may 
make or break the business depending on its usability. For 
dynamic UIs, designers would be uncertain of how their 
application will manifest itself on the various screen sizes used 
by their customers. These problems are similar to those facing 
the designers of websites requiring the presentation to look good 
on a variety of browser’s screens. Often, the lowest common 
denominator ends up defining the result; however, software 
tools that clarify the result across a common range of target 
platforms can mitigate this issue. The up side has great potential 
as the richer the display, the richer the automatically generated 
UI, and potentially the better the user experience. In Ubiquitous 
Computing environments, the range of target screen sizes is far 
greater than typically found in the PC world; therefore,  if the 
software products continue to work in these environments, the 
market size and potential revenues will be considerably larger. 
However, significant software engineering hurdles still remain 
in creating standards (the HTML equivalent for adaptable UIs) 
and the basic mechanisms to generate and display content to the 
user.  

2.4 Location Aware Computing 
One of the distinguishing features of Ubiquitous Computing 
over conventional distributed computing is the use of location to 
augment the data services available. Unlike the Internet in 
which a server is typically unaware of the location of the client, 
when computing becomes embedded into the local environment, 
interaction can be customized to improve the result. For 
example, a query about the multimedia equipment nearby can be 

automatically qualified by the current location and return 
information that is relevant to that room, rather than all the 
facilities available in the building. Likewise information 
accessed at a particular location on one occasion can be 
remembered and potentially offered to others who are about to 
make similar queries, thus opening up options that some people 
may have been unaware of. 
The use of location context goes beyond just knowing where 
you are, but can take into account ‘who’ is with you, further 
building contextual clues about the activity undertaken at that 
time. A system supporting a conference room application might 
automatically provide electronic links on an electronic 
whiteboard referencing all the documents that were accessed by 
that group on the previous occasion they met. Likewise, 
messages with a low priority might not be delivered with an 
audible notification to a laptop, if the system is aware that other 
people are nearby and a meeting is likely to be in progress.  
In universities, experimental context-aware toolkits [2] have 
been built to facilitate the design of context-based systems. 
However these tools have not seen widespread adoption. One 
possible reason is the uncertainty of location estimates: it may 
not be possible for a system to know exactly where something 
is, so how does it describe the range of possible locations? To 
address these concerns, research at the University of 
Washington [4] created the Location Stack as a means of 
working with several sources of location information at once, 
and fusing the data together in a way that improved the overall 
accuracy and allows applications to understand the error 
distribution involved with the location estimate. 
There are clear indications that location-based data enables 
valuable applications. ATT’s M-mode service has a feature to 
allow its clients to make location queries such as finding the 
nearest restaurants, based on location data inherent to the 
current cell tower in use. The most successful search engine, 
Google, has recently added local search to their search engine, 
allowing a query to be qualified by location. At present, a user 
is requested to type in a qualifying string for the location 
(assuming they know it), but this service is ripe for extensions 
based on GPS and other location automation technology. 
Successful adoption of these services in the metropolitan area 
may well provide motivation for system designers to use these 
techniques at the local level, in much the same way that global 
web searches, are being complimented with Google Desktop in 
order to have a similar service run on the file system of a 
personal machine. 
To date, the tools for location-based applications have not been 
available on mass to the industry. Although we now know how 
to turn wireless infrastructure into location-finding systems, 
these mechanisms have not filtered into the standard system 
building tools. A challenge for the community is to take these 
techniques and turn them into location-based APIs at the 
platform level, which can then be accessed on a wide variety of 
devices and utilize a variety of location technologies.  

3. Conclusion 
Many of the visions of computer science such as artificial 
intelligence, image recognition, and natural language 
interaction, have proved extremely difficult to achieve. The 
impressive calculations performed by a computer are far 



removed from the kind of open-ended problems presented by 
real world situations, and are not readily applied to the solution. 
Ubiquitous and Pervasive Computing were in some senses a 
way of taming real environments by placing embedded 
computation directly in the artifacts that are needed for physical 
work, and using orchestrated wireless communication to build a 
fully integrated system, with greater user value through 
augmentation. However, even this simplified model of the world 
presents difficult problems that are not easily resolved. Early on 
the issues related to the inadequacies of fundamental 
components such as displays, low-power processors, high-
capacity memories or wireless standards. More recently the 
limitations are associated with high-level system issues, such as 
power management, the co-ordination of wireless services, 
application user interface adaptation or the creation of generic 
capabilities to allow developers access to contextual 
information.  
For example, power management continues to be a problem for 
ubiquitous systems that involve mobility, or utilize disconnected 
operation, which by contrast is not an issue for infrastructural 
computing. Many energy conservation techniques are now well 
understood and improve the battery lifetime of mobile systems, 
but power management still needs careful consideration. 
Although embedded system designers know these techniques, 
the tools to allow them to be used by system software architects 
at a high level of abstraction, through conventional 
programming libraries, are not available. As with all the 
solutions we find in the ubiquitous computing arena, until they 
are integrated into standard tools and widely adopted, we will 
not see the impact that could be achieved.  
In this short paper we have focused on issues that are directly 
related to Ubiquitous Computing, but it should also be pointed 
out that many of the problems associated with distributed 
systems in general are also embodied in this area. The design of 
distributed systems is still hard and when multiplied by a larger 
number of heterogeneous computers connected by wireless 
networks become commensurately more complex. Just as in 
distributed systems, achieving the desired result when all 
components are fully operational is not necessarily difficult, but 
when failures occur automating the diagnosis and recovering 
from the fault is a much bigger problem, and usually requires 
the users to take some part in the process. However, in 
ubiquitous and pervasive computing the applications are most 
likely aimed at diverse work practices with the computation 
hidden from view, and thus unless the maintenance of these 
systems can be automated the deployment will remain limited to 
domains in which the help from an expert is readily available. 
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