Protocols for Real Time Voice Communicaﬁon ona
Packet Local Network

Stephen Ades, Roy Want and Roger Calnan

University of Cambridge Computer Laboratory

Corn Exchange Street,
Cambridge CB2 3QG, England

Phone (0223) 352435
Telex 81240 CAMSPLG

Abstract

There is currently much interest in alternative architectures and networks for
the provision of Integrated Services. A project at the University Computer
Laboratory hasbeen investigaling Integrated Service provision in a local area
context using a slotted ring: the scope of this work ranges widely from protocol
design for simultaneous transport of voice, data and images to user level
Integrated Service facilities, e.g. multimedia editors and image manipulation.

This paper addresses the lowest-level simultaneous-transmission of voice and
data on one network. In particular, since our network is packet based whereas
traditiona! voice-carrying networks have been circuit switched, it considers
the design of protocols for packet voice to produce delays no greater than those
in current circuit switched PABXs . a capability without which packet
systems simply are not practical for general use.

Our work on packet-based protocols has been fuelled by the fact that
commonly accepted telecommunications approaches to voice/data transport
are based on assumptions, from some time ago, that bandwidth is expensive
und that its usage must be maximised and optimised. These assumptions are
no longer true within current local aren network technology.

1. Introduction

In constructing an Integrated Services network, we have placed emphasis on
four particularareas:

1) low level protocols for simultaneous transport of voice, data and
images

(2} a modular design of servers which implement the network in an
elegant and cost-effective way, We consider our design elegant in the way
in which simple servers build up (a) functionality equivalent to a modern
PABX and (1) a logical basis on which higher level services can be
provided to the user.

(3) reliability of the system: much greater availability is expected of a
phone network than of a gencral computer network. I a ‘total
communications system® is be built fruom computer-like objects theo
these must be made highly reliable, with emphasis upon a graceful
degradation down to basic telephony servicesin the eventof failure.

(4) user level integration: we feel an important part of Integrated
Services to be the provision of new integrated facilities to the user at his
workstation. This extends beyond conventional ISDN philosophy, which
stops at the use of o single network Lo carry a varicty of trafliconly 8s far
assingle service terminals.

The sccond aspect ol our work has been reported in detail [1), showing lnivaur
modular design approach facilitates construction of the higher level services.
This paper conceras lower level issues, but in order to view these in context,
the next section summarcises our approach to medular systemdesign.

2. System Partitioning

The basic philusophy of our design was first te remove almost all avoidable
complexity from the phone itsell. Given a background in conventional
distributed computing there would be a tendancy to add intelligence to the
phone in order to decreuse the dependence onother, fallible, components of the
system. However we dislike this approuch because .

(it it increases the complexity of the phone, and hence ite production and
maintenence costs - maybe not by much but this increment must be
multiplied by a very large number of phones - and ,

(i) to place functionality in the phone is to delermine there what
functions are ofTered to the user.

When network services are upgruded and improved. this implies that the
phone itself will have to be altered - something we wish to avoid. (A PTT would
rather modify all its exchanges than all its phonesh

Our phone design achicves simplicity by ta) using a very simple voice
transmission and reception protocol and thy avoiding any knowledge of
network configuration or system functionality. The topology and
conliguration of the network is understood by n cuntroller treplicated for
reliability). This controller tells the phones to connect at different times to
various servers in the system which provide advanced functionality.

These servers implement simple components of the system lunction according
1o the following philosophy: a server which implements a single function will
perform it rather better thana large software packnge designed to implement
a number of rather different tasks simultancously. Its software, being a smalil
logica) partition, will be much cheaper to build and muintain than an
cquivalent part of a rather complex operaling systen. As with the phones, we
avoid the need in the servers for knowledge of other components inthe system.
By designing s simple functional interface to each server and using the
cuntroller again to configure these servers in ways which provide particular
services, we avoid the need to modify existing servers when another server is
modified/introduced.

Within the voice domain, two examples of serveraare

(i) & conference server, the function of which ia Lo take voice streams from
various sources, combine them in some manner such that each sender
will hear the sounds of ali other senders, and then re-emit voice streams
to the appropriate destinations

(ii) & translator, designed to receive voice streams (e.g. from phones),
package them into long data blocks and send these somewhere else, e.g. to
a file server for storage. This is an example of a single function per server;
phones are kept simple by only handling a very simpla stream voice
protocol. This, a8 will be explained, consists of very short data packets
and such a stream is not convenient for a file server - handling such a
protacol in real time would have serious implications for its performance.
We would like our file server to slore voice, data and images in a uniform
manner for the sake of elegance of higher level Integrated Services.
Instead of building separste voice and data file servers for real time
performance reasons, we build a general-purpose file server, plus s
translator which partitions out the real time stream handling.

Qur workstation conforms to the ‘single function’ philosophy in a perhaps
surprising manner. Workstations do not in fact handle voice at all -
integration of voice into the workstation is performed not at the physical level
but as a sofiware binding between a complex workstation and a very simple
phone. This has two motivations: first to make the complex end unreliable
workstation a partof the phone network is to compromise the reliability of the
phone network; secondly a workstation is designed to handle high level
soltware packages in an efficient manner: this is incompatible with real time
handling of voice streams.

3. Protocol Requirements

The main purpose of this paper is to describe a protocol layer for Integrated
Services traflic upon s slotted ring. Use of slotted rings for data transmission
is well understood and widely reporied [2] as are intelligent data-oriented
interfaces to such a network: therefore the matters ol interest hereare

(i) transport of voice in a packetised form,
(ii} how voice and data may be carried in the same network and

(iii) 8 "voice provider’ service to give a convenient interface from packet
voice streams to processes which consume or generate voice.

Historically, in real systems voice has been conveyed by circuit switching: this
will remain universally true until packet techniques can be shown to produce
acceptably small delays. Our approach to veice tranport is un attempt to
provide real time performance comparable with circuit switched systems. A
number of packet networks have been designed to achieve this by separating
voice transport ut a hardware level (e.g. using separate voice and data slots in
the same slotted ring {3] or by the use of different classes of block [4]). Whilst
this is an improvement on two separate networks, it is attractive to consider a
system in which slots for voice and data are not distinguished at the hardware
level or indeed at all - otherwise we veer towards the ISDN approach, where
difTereat services have different network terminations. The slotted ring used
for this work is such that there need be no separation of slots for voice and
data.

Not only do we avoid slot separation, but also it becomes possible to transmit
voice and data each in their ‘natural’ modes; using a stream-like approach
with guaranteed bandwidth for voice and a data-block approach with as much
bandwidth as happens to be available at a given instant for data. This is very
different to for example the ISDN, which was essentially designed for and is
best suited to voice traffic. In the ISDN, voice works in its ‘natural mode’ and
data is something of & second cless citizen. The fact that we cen

simultaneously treat voice and data as first class citizens is 8 function of the
~

properties of our ring, which we now describe.

4.The Cambridge Fast Ring

Our slotted ring, the Cambridge Fast Ring [5), is a derivative of the better
known Cambridge Ring. The current microcoded implementation of the Fast
Ring achieves a bandwidth of 50Mbs !: a VLSI realisation to give BO-100Mbs !
is well advanced. Each slot in the Fast Ring has a data field 256 bits long. The
properties of the Ring which are most relevant Lo combined voice/data
transport have been described before in the literature (6] but are sufficiently
pertinent to this paper to be summarised here:

(i} Equal bandwidth sharing amongst equal requesters: if N users
simultaneocusly request maximum bandwidth, they will each receive an
equal share of the total. This is not unusual in local networks, but note
that the total usable bandwidth does not fall off as the offered load
increases (c.f. simple CSMA systems),

(i) Fine granularity of bandwidth sharing: in for example & CSMA or
token ring system, if the packet size is smalf the available bandwidth
drops off sharply. This is not the case for & slotted ring: bandwidth
sharing may be done at the slot level without loss of efficiency and it is
perfectly normal for different users to be using dramatically different
packet lengths.

(iii) Bandwidth sharing amongst unequal requesters: where P small users
and Q large users of bandwidth make requests simultaneously, the P
users’ needs are satisfied extremely quickly and the Q users take equal
shares of what then remains.

These three properties make a near ideal climate for voice and duta sharing a
single network. For data transmission e.g. a file transler or a screen refresh)
we desire as much bandwidth as available at the instant of demand. In a
typical data network there will be many logical connectiona st one time, the
majority of which are idle at any instant. When s connection is not idle (it
might say be loading an executable file across the network) it is desirable that
the transfer happen as fast as possible.

In contrast the bandwidth réquiremem.s of voice are modest but the-
bandwidth must be available when required and should be formed of small
packets (for reasons of delay - discussed further below). In a data system we do
not wish to limit the number of simultaneous logical connections - if all
connections become active at the same time it is expected that all will proceed
slowly. In contrast for voice we are willing to limit the total number of calis but
require that bandwidth be available for those calls on demend. Property (ii)
above ensures that the voice can be sent in suitably small packets. The other
two properties enable voice and data tn be merged conveniently: the voice is
clearly the P users and the data the Q users. In a typical Fast Ring the phone
can expect to acquire & slot within roughly a tenth of & millisecond of
requesting it.

5. Properties Required for Voice
Connections

In order to justily the design of our voice protncol we need to consider two
issues - acceptable network delay and acceptable error rate. In & packet
network, delay will come from three sources: packetisation delay, minimum
transport delay and statistical queueiny jitter. The minimum transport delay
can be neglected within a local area context, being mainly a function of the
speed of light. The statistical queueing jitter occurs due to the fact that in &
packet switched system bandwidth is not actually prereserved so that at any
instant demand may exceed supply. For this reason some packet network
builders (as mentioned above) have proposed slots specifically reserved for
voice. We contend that this is unnecessary, since in our network if the phone
only wishes to obtain a single slot at 8 time the maximum waiting time is very

small®,

*This is not true under afl possible loading conditions, but given o wa'-l aetwork and Nkb-"
voice streams, it would take 8 very large number of stations on e single Ting to make it {alse: the
Cambridgs Fast Ring design is of small rings linked by slot-level bridges and that sumber should aot

svarevesn remotely be approsched.

\

The most serious source of delay is packetisation, for a packet containing time
'3 worth of samples implies a delay of ¢ dus to packetisation. For this reason
we send very short packets of voice, something to which our netwark is well
syited. Our normal packet length is 2ms - i.e. 128 bits of standard PCM-
encoded voice. This length was chosen for three reasons: it fits into a single
ring slot and hence the transmission acheme in a phone can be very simple.
The delay induced is of the right order for speech in a local link. Equally
important, this packet length is the unit of ‘not actually caring whether a
packetisdelivered' . asexplained below.,

Error rates acceptable for voice have been investigated many times: an oft
quoted figure is 0.1% [7]; more recent work has produced a more conservative
requirement of 10 % under low sound level conditions [8]. Which figure is
appropriate depends on the types of error on the link. Simple random errors
are irrelevant in the context of our network: the error rate of the Cambridge
Ring is typically better than 10°'° [91. AL that level, it is better to play back
packets known to contain errors than to reject them on checksum, Our concern
in far packets completely fost.

The distribution of jitter in a packet network normally shows a small tail-off of
packets delayed an sbnormally long time. There may slso be a few not
delivered at all (due to for example hardware level error rejection of a packet).
Por a real time voice connection, voice packets arriving at the destination too
|ats to be played back are exactly as useful as packets which do not arrive at

alk

{n packet voice systems we are therefore interested in the ear's perception of
hurst errors rather than poisson.distributed single bit errors. Studies have
shown [10] that the ear is not affected by bursts occuring up to 1% of the time
provided each burst lasts less than 4ms. Thus the 2ms packet really is o unit of
*not actually caring whether o packet is delivered'. It is important to realise
that in the context of & packet based stream, it is very dificult to build 2
service with complete guarantee of fast, first time delivery. We have adopled

"the alternative approach of designing a service such that it does not need to
meke any such demands.

The target in our voice protocol work is to achieve phone-to-phone delays of a

_ few milliseconds: our present protocols work in the range 2-5ms.
Telecommunicstions engineers may object that the total delay currently
allowed for PABX equipment is a maximum of 2ms. The reply to this is that
we are interested in showing that packet.based systems can worlc in the right
ball-park, i.e. a few rather than a few tens or hundreds of milliseconds. Qur
protocol could be made to work to CCITT standards by reducing the number of
bits sent in a slot below 128, although the utilisation eflTiciency of the ring
wnuld eventually begin to sufTer.

6 The Voice Protocol

o far we have expressed a desire to send voice as a stream of 2ms packets.
Since random ercors, on the ring are not frequent enough to concern us, we
peed oot worry shouwt checksumming. The protacol can in [act be very
Kighiweight io all respects, sending voice as a stream without flow control or
qcknuwlzdgemnls, There is no place for flow control, since bnlh the netwark
,wad any consumer of voice must guarantee to handle 64kbs” per stream.
Acknowledgements canpot be of any use: in data applications if a block is
Aelivered containing errors ot is not delivered st all, the transmitter will time
out, the acknowledgernent and retransmit. In 8 voice application the
net‘._rnns,mitud data would acrive too late to be replayed, which, as already
noted, is no more useful than it not arriving atall.

lo any packet voice system, there needs to be some buflering in a receiver to
give consistant voice quality deapite the jitter in packet transmission times
;N_:tp,ss the network. Much work on packet voice has assumed that this
Bbulfering should be adpptive during a call {11}, but thisis imenmpsatible with
owx approach - we are talkiog about constructing a network in which the jitter
bas a predictable and small upper bound rather than the approach of saying
tb.n,t packet networks will bave unpredictable and large jitler, with which we
cope using adaptive bullering. In practice it is hard to make such adaptive
scb,emes work consistently well {6] and besides we claim that in a practical
Jocal area scheme the delay due to such bulTering is inadmissable,

We have already accepted that occasionally packets either fail tn arrive or
arrive with excessive jitter. It is important to realise that our protocals are
very lightweight simply because the Ring is not & hostile environment. We fee!
that the protoco! should be made as lightweight asthe environment will allow;
that a packet protocol attempting to work scross both local and wide area
connections is a mistake because it will either

(a) be built for the local area and hence not withstand mors hostile wide

rrea conditions or

(b) be heavyweight enough for the wide srea and thus unnecessarily

heavyweight for local use - not only making the phones unnecessarily

complex but also giving unacceptably largedelays.

Our voice protocol is therefore not adaptive - it can be termed "synchronous’ in
that both transmitter and receiver have & notion of time linearly increasing.
However the two ends neither hold the same absoluts time nor know the time
difference between oneanother. This can be explained by describing how an
individual voice stream starts up between two stations r and y. The aystem
controller tells y to listen to x and when this command is acknowledged tells x
to send to y. The listen command tells y that the maximum expected jitter on
the link is j. When it receives the first packet from z, y delays it for time j
before starting a regular playback of samples, This allows for the case nf n first
packet with zero jitter, and hence subsequent packets with up ta j of jitter will
arrive in time tn be played back. The buffer space in the phone must be at least
2j long, to allow for the case of a first packet with /s worth of jitter and ensure
that there is sufficient buffering in the phone to accommodate packets with no
jitter®. All will be well now iif packets from x arrive with jitters in the range
0.: there will never be insufficient room in the bufTer to store them, nor a lack
of samples to be played back upon demand. The total delay on the voice link ia
d 442 where d is the packetisation delay, being the length (i.e. duration) of
voice sent in a single slot; is the actual transmission time across the network
in the absence of any queueing delays and j is the maximum queueing delay,
consumed in receiver buffering.

We now consider a packet arriving with a greater jitter than j, or not arriving
at all. We have already established that such occutances, unless very
frequent®®, will not upset the ear, but must ensure that they do not upset the
protocol. Suppose that a packet is heavily delayed. The transmitter generates
packets at regular intervals. The receiver maintains two pointers: the first is
incremented every 125)s and indicates where the CODEC will next pickupa
sample to replay; the second indicates where in the buffer the next packet will
be placed when it arrives. I the first pointer overtakes the second, the
condition under discussion has occurred. The CODEC's sample-fetch routine
sets a fag indicating that it will continue to increment its ‘next sample’
pointer {to retain synchronism) but will play back a D.C. level instesd of
samples picked up from the bufTer. When the delayed packet arrives, the
protocol observes that the CODEC's ‘playing back silence’ flag is set to true.
The packet is placed in the buffer and the ‘next packet’ pointer moved up as
norroal. If the ‘next sample® pointer is now behind the 'next packet’ pointer
then ‘playing back silence’ can be set to false, so that the later part of the
packet, which was not too Iate to be of use, can be played back. Otherwise the
packet was entirely too late to be useful, but the poinlers bave been
manipulated correctly for the arrival of the next packet.

Suppose a packet fails to arrive at all: we need a method to maintain
synchronism. Each time a packet is trapsmitted the sender incremeants a
sequence number and sends its current value, When a packet goes astray, the
receiver will detect this from the next sequence number to arrive, Suppose
that the sequence number indicales one missing packet, The 'bext packet’
pointer is therefore moved up the length of one packet before inserting the
packet. Since in our system j should be less than d, when the packet arrives
the flag ‘playing back silence’ will lmost certainly be true. Therefore, after
moving ‘next packet' to denote the missing packet, the space between ‘next

*Claarly if the playback duration of tha packet dis grester than jthan the buffering must be st loast

de).

*sot regular - the ear (s vary sentitive to noise which forms & cohsrent pattarn but not toa fairly high

tevel of block losa if trualy random.

sample' and 'next packet’ is filled with D.C. level samples. Then after the new
packet has been added to the buffer, ‘playing back silence’ can be set to false.

This completes the account of the voice protecol under normal conditions’. A
few further issues remain to be tackled: first how the phones meintain
synchronous clocks, secondly some practical details as to how the voice stream
service is implemented for servers as different as phones on one hand and
conference servers/transiators on the other. The reader may also have noticed
some additionnl error cases which need appropriate handling: these will be
discussed. Finally the place of silence detection and suppression in this scheme

is considered. {

7. Distribution of an 8kHz Clock

In the above algorithm, whilst two phones need not know the time difference
between their two clocks, the scheme only works if they have the same PCM
sampling clock frequency. In conventional digita) phone systems, there is a
single reference distributed by the network to all speech handlers. This is
rather heavy hended for a phone-to-phone connection and also we desire a
system where failure of the clock distribution service does not stop phone-to-
phone interactions. Our phones contain a crystal trimmed by a VCO. Thus the
sampling frequency is always close to 8kHz (as required by the filters in our
CODECs for comprehendible speech) but can be trimmed to compensate for
component drift etc. Whenever & phone is receiving a voice stream from
elsewhere, it compares the rates of receiving packets and of playing them back
and adjusts the VCO to make the two equal (adjusting with & suitably long
time constant and in small increments).

Thus two phones initially set at difTerent frequencies will adjust to the mean of
the two. Suppose that a phone is receiving voice from either a wide area
network gateway or from for example a translator. The wide ares interface
will contain 8 stable clock and we also arrange that our translator receives a
similarly accurate clock. Neither of these will adjust Lo the phone, so that the
phone will adjust exactly to them. However a problem arises if a phone at the
wrong frequency is sending packets to s translator [a simplex stream, unlike
the interaction of two phonesl, since our scheme does not provide 8 way to
signal back to a transmitter. The quality of voice from a conlerence server, if
its input streams are at different frequencies, will also be poor, although the
phones will gradually adjust to the server's absolute clock through their
receiver slgorithms. We have an interest in ensuring that the phones
normally run at a canonical frequency.

Our novel approach to this is a service called the 'speaking clock’. When a
phone's handset is down, instead of closing its voice input channel it listens to
a stream from the speaking clock. This stream is 8 perfectly ordinary voice
stream, but emitted by a server with an accurate time reference. The phone’s
clock thus adjusts o this reference. It was explained nbove that the phone's
reception algorithm can cope with missing packets. In the stream from the
speaking clock nearly all packets are missing - it only sends & packet to each
idle phone roughly ence a minute. Thus both the network bandwidth overhead
and the complexity of the speaking clock itaelf are trivial, but the use of
sequence numbers in the voice stream enables the phone's clock to be
accurately maintained.

Thus we have a service which normally keeps a common clock running
throughout the system, but our phones run aatisfactorily in absence of this
reference. The sound quality in two phones adjusting to one another is
noticeably poor for the first few seconds but it does not impair understanding
of speech. Since the failure of the speaking clock is a rare event, we can
tolerate this occasional reduction in quality.

8. Provision of a Voice Service

The next issue to consider is how & voice delivery and transmission service
should be provided to & user in (a) & phone (b) & server handling several
streams simultaneously. The answers turn out remarkably similar and are
contained in 8 service which we have defined and implemented under the title
of a "voice provider',

Our approach to this service, like our whole approach to voice protocols, comes
from the observation that voice streams behave very well on our Ring, thus
requiring little attention whilst running. For the phone this is very
convenient since it reduces complexity. In a more complex real time
application like the translator we wish to minimise explicit interaction
between the voice provider and its client, preferably confining it to channel
set-up and clear-down. This can easily be done if the voice provider and its
client normally communicate ‘implicitly’, using the pointers described above.
When u client calls the voice provider to set up & voice reception channel, it
specifies locations of the pointers and flags needed in the voice reception
protocol. As it receives packets, the voice provider then updates the ‘next
block® pointer and reads the 'next sample’ pointer, setting ‘playing back
silence’ to false at appropriate moments. The client, as consumer, will update
*next sample’ and read "next block’, setting 'playing back silence’ to true at
appropriate moments®.

The advantage of this approach is that no explicit calls ace made between the
voice provider and the client, so that the system is very efficient - in such an
application as the conlerence server this means that the number of streams
which can be handled simultaneously is increased. It is cle.ur that a similar
scheme can be implemented for the case of transmission, such that the
generator of voice blocks updates a pointer indicating when blocks are ready
to be transmitted snd the voice transmission provider looks every 2ms for such
blocks and transmits them. Since the normal behaviour of voice streams
across the Ring is very regular, such a simple approach will work well given

(a)a circitlar buffer of sufficient size and

(b) code in the provider to handle a few error conditions that can occur.

The minimum size of buffer required is in fact not 2j** but rather 4j [or 4d}.
This is because the tests for abnormal conditions are done on the basis of
whether pointers are 'in the correct half of the buffec’ (otherwise terms suchas
*behind’ or ‘in front of have no meaning), implying that normally no more than
half the buffer can be in use at a time.

The ecror conditions which may arise concern cases where the reception buffer
is either habitually overfull or empty. [n normal running, there may

occasionally be no samples available. This must not occur too frequently, and *

there should never be insufficient room in the bufTer for packets when they
arrive. There are two ways that this can happen. One is that the [irst packet,
against which synchronism is measured, is unusually delayed so that the
buffer is then constantly overfull. We bave observed the other case much more
frequently: where the two phones’' clocks are initially not at the same
frequency, this will cause the buffer gradually to fill or empty. When the
frequencies do equalise, the buffer may be lelt persistently too full or
empty

The provider therefore checks for continual occurences of buffer overfull or
empty (not single occurences as our protocol is designed in expectation of
these! and in such a case simply reinitialises the reception pointers -
eflectively when an error condition is detected the provider causes the next
received packet to be delayed for time j belore playback, just as at startup. It
will also take suitable actions upon detecting abnormal leaps in the sequence
count. It discards a single block with an abnormal sequence number, as this
may simply be a bit error, and will not reset its current sequence to the

g seq e until this seq appears per
The way in which the value of j is determined is noteworthy: in our aystem it is
given to a phone (or other server) by the system contraller as part of the ‘listen
to ' command. For phone-to-phone links j must be very small, since real time
delay on local links must be minimised. This is not true of all sourees - consider
s translator talking to & phone. This is clearly nota real time link;

*1f the rasdar is becomiry baifled by detnil at this point, (1)be should simply note that thit is. reaily

only the standard procedurs for ipulating s circular buffer,

#00r 2d, whichever 18 the larger: it is convenisnt to make the buffer an integral aumber of packats
in length, 30 that tasts for wrap arouad and o samples available need only be parformed par packet

rather than per sample,

furthermore the translator has & more complex interface than the phone, so
that it may have more difficulty than & phone in jaunching a rock steady
stream of packeta. This can be accommodated by increasing j in the receiving
phone a little (within limits set by the fact that the phone must have 4j of
buffer available) such that the task of a translator becomes much easier. This
technique can be applied further: suppose a wide-to-local area bridge huas
similar trouble in transmitting. Then it could increase j, but note that

(a)thisis a real time applicationand

(b) the extra delay induced must be accounted in the overall delay

specification of the wide area link.

All clients of the voice provider use circular buffering, with explicit contact
only to start up or close down a stream, but different clients have slightly
different needs: the voice provider therefore provides a number of different
options. For a translator we do not want space to be leftin the circular bufTer to
denote missing blocks, but want the occurance of missing blocks be flagged in
the buffer. In the phone and the conference server we wish spaces to be left -
the voice provider should lay the stream into the buffer in exactly the correct
sequence. A phone wishes to be notified of the increase in the sequence number
each time & packet arrives, so that it can adjust its VCO. These are however
slight differences and the outline behaviour of the provider is the same in each
case.

9. Silence Suppression

In papers on packetised voice the writer will generally argue somewhere that
packetised voice can be much more efficient than circuit switching, if use is
made of silence detection and the TASI advantage. We on the other hand do
not suppress silence transmission from phone to phone: we are building a
packet network not to economise on bandwidth {which is cheap and plentiful)
but to provide an environment for integration of different types of traffic in a
natural manner. Our reason for not wishing to suppress silence from phone to
phone is that when listening to a speaker who is in & noisy room, there is a
very noticable and irritating difference between the background noise during
talk spurts and complete silence during suppression. There is no need for this
annoyance, since bandwidth is not an issue. However when trunsmitting our
phones do detect silence periods (using very simple hardware) and set 8 flag in
each transmitted packet appropriately: packets marked as silence can then be

suppressed when for example storing voice on a file server or sending the
stream over a satellite link or similar wide area connection where the cost of
bandwidth is important. Simple silence detection gives an appreciable saving
in bits stored or transmitted®. When the voice is recreated for playback in
another phone, either it will contain the irritating geps or alternatively
processing power can be used to synthesise the missing background noise, this
being an acceptable cost for the reduced bit rate. However we would be loathe
to place such processing power in the phone, because we want to keep the
phone simple.

10. Image Transmission

This paper has cancentrated on the integration of voice and data. To produce a
general integrated system, images (from single frame transmission to full
frame-rate streams) must be incorporated into the transport framework. Work
isin hand in thisarea. Little will be said here other than that our schemes for
compression of images are based on the same policy as for voice streams, i.e.
the observations that

(a) bandwidth saving is not the single crucial issue and

tb) it is much more difficult to produce 8 highly reliable stream delivery

service in a packet network then to design a protocal tolerant to bursts of

data loss.

*Batlar compressions can be obtsined from for sxample LPC [12) techaiques, but this is much more

complex than silence supprassion and slso causes appreciable deiay.

Therefore we are warking nn eompression algorithins which trade efliciency
against a combination of coding simplicity and redundancy specifically aimed
at accommodating error bursts.

11. Conclusion

The design of the packet voice protocol set out in this paper is primerily
motivated by

(i) the desire to use a packet network for Integrated Services provision
because it produces a better basis on which to provide higher level
integration in a natural, cost efTfective manner !

(ii) the need to produce a voice stream service giving delays comparable to
those currently required of the conventional PABX

(iii) the requirement that a packet-based phone be a very simple entity

Integrated transport of voice and data in the same network is made very
straight-forward by the low level behaviour of our slotted ring: there is no
need for example to use slots designated for voice stream traffic.

OQur voice transmission protocol is very lightweight because

(i) conditions for stream transmission in the local network are favourable,
8o thatl no heavyweight protocol is required

tii)a heavyweight protocnl, as normally used for data, is of no use because
of the tight delay requirements for voice streams.

This lightweight approach appears lo be satisfsactory, in that our phone
system does indeed give good sound quality at the same time as very short
delays.

All handling of voice streams in bur system is performed by a service known as
the 'Voice Provider' which reflects the style of our protocol: since the handling
of streams in the network requires little supervisory effort, producers and
consumers of voice do not need to interact in a complex manner. They use a
circular buffer into which the producer places digitised voice samplesand from -
which the consumer takes them. The circular buffer is made sufficiently long
that such a simple approach will produce acceptable sound quality. Consumer
and producer communicate implicitly,i.e. by sharing pointers and flags, rather
than explicitly, i.e. using a conventional procedure call and return mechanism.
This gives a very efficient service, which is of great benefit in both reducing
the processing power required in a phene and increasing the capacity of
servers which handle several streams in parallel.

References

[1] Needham and Ades: “Integrated Services using & Baseband Local
Network™ (to be published)

{2] Needham and Herbert: "The Cambridge Distributed Computing System™;
Adison-Wesley Publishers, ISBN 0-201-14092-6(1982)

{3) Lazar et al.: "MAGNET: Columbia's Integrated Network Test Bed™; iCC,
Chicago 1985 :
{4} Bux et al.: "A Local Area Communication Network based on a Reliable
Token Ring System” Proc IFIP - TC6 Symposium on Local Area Networks,
Florence 1982

{5] Temple: "The design of the Cambridge Fast Ring” Proc IFIP WG6.4, -
Workshop on Ring Technology based Local Area Networks, Kent 1983

16) Adams and Ades: "Voice Experiments in the UNIVERSE Network™; ICC,
Chicago 1985

{7] Bullington snd Freser: "Engineering Aspects of TASI"; Bell Systems
Technical Journal p353, March 1959

{8] CCITT Planning of Digital Systems: Special Study Group D; Contribution
103, June 1974

(9] Dallas: "A Cambridge Ring Local Area Network Realisation of a Transport
Service™; Proc IFIP WG6.4 - Workshop on Local Area Networks, Zurich 1980

(10] Gruber and Strawczynski: "Judging speech in dynamically managed
voice systems™; Telesis 1983 Two, pp 30-34

{11] Kleinrock and Naylor: “Stream Traffic Communication in Packet
Switched Networks”; IEEE Trans. Comms., Dec 1982

{12] Markel and Gray: "Linear Prediction in Speech™; Springer Verlag (1976)

