
10	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/11/$26.00 © 2011 IEEE

Smartphones
Editor: Roy Want n Google n roywant@acm.org

H ow do you combine the strengths
of the Web with the native capa-

bilities of the phone? Anyone who has
learned how to write a native mobile
application knows that it’s not straight-
forward. Compared to Web applica-
tions, native applications don’t inte-
grate as naturally with the richness of
the services and content that the Web
provides. If developers could apply their
knowledge of designing Web applica-
tions to smartphone application design,
they could leverage years of experience
to rapidly accelerate phone application
development. How do we build a
mobile application development plat-
form that supports the fluidity, rich-
ness, and power of the Web combined
with the special capabilities of mobile
devices?

A Web-centric approach to mobile
applications supports

•	 rapid prototyping for mobile applica-
tions,

•	 easy, unified integration with Web
services, and

•	 access to the mobile hardware resources
through JavaScript.

Platforms and standards such as
PhoneGap (www.phonegap.com),
WebOS,1 and HTML52 address these
points to varying degrees. Argos is a
Web-centric phone development plat-
form designed to expose the Android
operating system’s rich set of features.

Developers write HTML and cascad-
ing stylesheets (CSS) along with Argos’s
JavaScript library to gain access to
extended features. Examples include
telephony, haptic feedback, Bluetooth,
Near Field Communication (NFC), and
even graphics rendering using multiple
overlays.

In this article, we describe this
approach, introduce the Argos system
(see Figure 1), compare Argos with
related platforms, detail its architec-
ture, and discuss current conclusions
and future work.

The Case for Mobile
Web Apps
Today, smartphone application devel-
opment environments are reminiscent
of the desktop environment of the
1980s. At that time, desktop devel-
opers used specialized integrated
development environments (IDEs) to
create executables that were sold as
shrink-wrapped software or, later,
made available for download over the
Internet.

By the mid-1990s, the introduction
of the Web and HTML made it much
easier for people of all professions to
write and share documents.3 With the
introduction of more powerful client-
server models and embedded languages
such as JavaScript with document
object model (DOM) manipulation,
these documents turned into applica-
tions. Millions of applications are now

at the fingertips of anybody with an
Internet connection.

Today, in the nascent world of mobile
computing, we find ourselves back to
using specialized IDEs to write stand-
alone native applications, which are
vetted and hosted in corporate market
places, such as those for Amazon,
Android, and iOS. But because smart-
phones are nearly always connected to
the Internet, we’re missing out on all
of the advantages gained from moving
desktop-centric computing to Web-
based applications. Three main issues
surround the transition to Web tools for
mobile application development: rapid
development, Web services, and access
to native phone resources.

Rapid Development
It’s easier to craft innovative mobile
user experiences using powerful
HTML layout and rendering engines
than current native IDEs. Web-based
data-exchange protocols, multimedia
support, and Web service APIs give
developers universally accepted
mechanisms for integrating millions of
utilities and content elements. Toward
this end, new protocols by the World
Wide Web Consortium (W3C) enable
richer Web mobile development,
such as the detection of device
orientation and access to platform
resources. However, Web standards,
which need international agreement,
will always lag behind the new

Argos: Building a
Web-Centric Application
Platform on Top of Android
Rich Gossweiler, Colin McDonough, James Lin, and Roy Want

PC-10-04-Smartphones.indd 10 9/21/11 9:51 AM

October–december 2011	 PERVASIVE computing� 11

capabilities that phone manufacturers
introduce.

Web Services
Smartphones have less CPU perfor-
mance and less storage capacity than
desktop PCs and network servers, but
their performance is more than enough
for thin clients. Thus mobile devices
can access a wealth of Web applications
through their browsers and can display
both online and local data including
real-time media. Further, the promise
of higher-bandwidth ubiquitous 4G
wireless connectivity will make an
even stronger case for Web services in
the future. Such services also have the
flexibility to be combined in mash-ups,
providing greater dynamic capabilities
and extensibility.

Access to Native Phone Resources
Modern smartphones go beyond tra-
ditional computing architectures and
include unique resources such as physi-
cal sensors (for example, an acceler-
ometer and compass), GPS hardware,
Bluetooth, and NFC. This makes
possible the creation of exciting new
applications such as context-aware
software and more seamless financial
services.

However, to access these resources
you must create applications using
native tools. For Android, this requires
learning the details of its unique pro-
gramming model, such as activities,
intents, manifests, layouts, thread-
ing, and resources. It’s powerful but
cumbersome.

The Web programming model is
a promising alternative that’s easier
to use, but the phone’s browser can’t
access all of these native resources. We
need a system that enables rich mobile
Web development through easy-to-use
libraries that keep up with the latest
smartphone developments.

Motivation for Argos
Argos was designed to address these
three issues and focus on building a
Web-centric development platform on

top of Android. It aims to make it eas-
ier to rapidly develop Android applica-
tions, integrate the Web with Android
development, and expose Android’s
rich set of native resources as APIs for
Web-centric applications.

By focusing on Android, Argos
attempts to bring out the strengths of
the Android operating system at the
cost of not supporting the other sys-
tems. Examples include support for
voice recognition, NFC, and the abil-
ity to combine webpages, 3D graphics,
and camera previews. Argos can also
quickly introduce APIs in the future to
track the latest technologies.

Related Systems
Several Web-centric mobile develop-
ment platforms support various mobile
operating systems to varying degrees. At
one end of the spectrum are Web-centric

operating systems such as HP’s WebOS;
at the other end are operating system-
agnostic representations, such as
HTML5. Popular platforms such as
PhoneGap occupy the middle ground,
not tuned to a specific platform, nor as
generic as HTML5.

WebOS
WebOS is a Web-centric mobile operat-
ing system running on the Linux kernel.
Developers write HTML/JavaScript
applications that have access to the
operating system’s capabilities. Argos
differs from WebOS in several ways.
Argos is separate from the underlying
Android operating system, so assump-
tions about the security model, the
launching, threading, and resource
management can be evolved without
changing the operating system. Argos
targets Android to leverage its specific

Figure 1. The Argos system: (a) an Argos launcher page and (b) integration of the
Argos software stack with Android.

(b)(a)

PC-10-04-Smartphones.indd 11 9/21/11 9:51 AM

12	 PERVASIVE computing� www.computer.org/pervasive

SmartPhones

SmartPhones

operating system capabilities, whereas
WebOS is designed for HP’s specific
mobile platforms.

PhoneGap
PhoneGap is a Web-centric mobile
development platform that uses HTML,
CSS, and JavaScript. It supports vari-
ous phone capabilities on multiple
mobile operating systems such as iOS,
Android, WebOS, Windows Phone, and
Symbian. This reach is both a feature
and a limitation. Because not all operat-
ing systems support the same features,
PhoneGap chooses to support different
sets of features on different platforms.
Although Argos shares many of the
same design principles as PhoneGap, it
focuses purely on Android, providing
comprehensive access to specific and
powerful capabilities at the browser
level.

W3C and HTML5
Advancements to the W3C’s HTML5
standard, such as video, audio, device
orientation, and geolocation, repre-
sent the ultimate push from native to
Web-centric development. Web-centric
platforms such as Argos, PhoneGap,
and WebOS lead the way to these
advancements by testing and maturing
new capabilities. For example, these
platforms could create APIs for non-
standard components such as NFC or
camera-based head tracking, which
could then form the basis for HTML
support in the future.

Argos
The Argos system consists of a custom
WebKit browser on top of an Android-
specific JavaScript library that gives
Web application developers access to
low-level mobile phone capabilities.
To accomplish this, Argos provides a
Java-to-JavaScript bridge and a set of
Java-based Android-specific manag-
ers to access native phone capabilities.
Because Argos is Web-centric, people
can develop applications using their
desktop and an ordinary HTML5
browser. This gives them the flexibility,
tool-chain, and development environ-
ment that they’re used to.

Argos Architecture
In Argos, developers can create HTML,
CSS, and JavaScript applications that
are stored directly on the phone’s
memory card, so Argos doesn’t require
Internet connectivity to run. The Argos
JavaScript library exposes the rich,
but often complex, capabilities of the
Android operating system in a clear and
concise manner. For example, accessing
the text-to-speech capabilities of the
phone is as simple as writing:

Argos.getTextToSpeechMgr().say('hello, world');

Argos’s primary rendering surface and ren-
dering engine is Android’s built-in Web-
Kit, called WebView, with some modi-
fications. When Argos starts, it looks
for an argos/index.html file as the first page
to show. The default uses a traditional

grid of application icons, but by chang-
ing this page, you can create different
ways of accessing and presenting appli-
cations. To create an Argos application,
you simply create webpages and link the
launch page to the Argos home page
(see Figure 2).

Argos provides a set of JavaScript
manager libraries that abstract access
to the Argos Java-JavaScript bridge. For
example, Argos.NfcManager provides func-
tions to read an NFC tag’s data and to
write new data to the tag, and an event
to alert your application when an NFC
tag has been read.

Argos’s Java layer is built around a
set of Java-based managers to represent
major components of Android. Each
Java manager maintains its resources
(for example, the camera resource).
Android exposes a complex applica-
tion life cycle through onCreate(), onStart(),
onPause(), onResume(), onStop(), onRestart(), and
onDestroy() methods, which handle inter-
rupts from other applications such as
a phone call. Argos instead exposes a
simplified life cycle through initialize(),
turnOn(), turnOff(), and terminate() calls, and
implicitly handles the system state and
resources. This is a cleaner abstraction,
and it lets the developer explicitly turn
resources on and off (for example, to
preserve battery power or dynamically
change security access).

To communicate between the Java and
JavaScript layers, Argos uses a bridge
construct that exploits Android’s abil-
ity to expose Java methods as JavaScript
functions. Each Argos Java manager
passes values through this bridge using
JavaScript Object Notation (JSON). This
provides a uniform and generic interface
between the back and front ends.

Overlays
Argos also supports three distinct ren-
dering layers that are overlaid to pro-
vide one composite view (see Figure 3).
The top layer is the HTML rendering
layer (WebKit) that supports 2D graph-
ics; the middle layer is an abstraction
for OpenGL that supports high-level
3D graphics operations; and the bottom

Figure 2. Argos applications contained in directories on the phone’s memory card.

Your app goes in
here as a directory

SDCard/argos

Main page holding
the list of apps

index.html statusBar/
 index.html

apps

helloSensor/
 index.html
 helloSensor.png

voiceExample/
 index.html
 voiceExample.png

panorama/
 index.html
 panorama.png

PC-10-04-Smartphones.indd 12 9/21/11 9:51 AM

October–december 2011	 PERVASIVE computing� 13

SmartPhones

grid of application icons, but by chang-
ing this page, you can create different
ways of accessing and presenting appli-
cations. To create an Argos application,
you simply create webpages and link the
launch page to the Argos home page
(see Figure 2).

Argos provides a set of JavaScript
manager libraries that abstract access
to the Argos Java-JavaScript bridge. For
example, Argos.NfcManager provides func-
tions to read an NFC tag’s data and to
write new data to the tag, and an event
to alert your application when an NFC
tag has been read.

Argos’s Java layer is built around a
set of Java-based managers to represent
major components of Android. Each
Java manager maintains its resources
(for example, the camera resource).
Android exposes a complex applica-
tion life cycle through onCreate(), onStart(),
onPause(), onResume(), onStop(), onRestart(), and
onDestroy() methods, which handle inter-
rupts from other applications such as
a phone call. Argos instead exposes a
simplified life cycle through initialize(),
turnOn(), turnOff(), and terminate() calls, and
implicitly handles the system state and
resources. This is a cleaner abstraction,
and it lets the developer explicitly turn
resources on and off (for example, to
preserve battery power or dynamically
change security access).

To communicate between the Java and
JavaScript layers, Argos uses a bridge
construct that exploits Android’s abil-
ity to expose Java methods as JavaScript
functions. Each Argos Java manager
passes values through this bridge using
JavaScript Object Notation (JSON). This
provides a uniform and generic interface
between the back and front ends.

Overlays
Argos also supports three distinct ren-
dering layers that are overlaid to pro-
vide one composite view (see Figure 3).
The top layer is the HTML rendering
layer (WebKit) that supports 2D graph-
ics; the middle layer is an abstraction
for OpenGL that supports high-level
3D graphics operations; and the bottom

layer is the real-time camera view of
the world. By superimposing all three,
developers can create augmented real-
ity applications with HTML controls
embedded over the camera’s view.

Emulator
Because Argos applications are writ-
ten in HTML, CSS, and JavaScript,
Argos can run on your desktop in an
ordinary Web browser (see Figure 4).
Argos automatically detects whether
the application is running on an
Android mobile device or on a desktop.
If it’s running on a desktop, Argos is
emulated by the browser as a webpage
view that is constrained to be the size
of the phone screen. The emulator also
simulates any data that you would get
from a sensor. This provides tremen-
dous power for developers, as they can
use their favorite Web IDEs, libraries
(such as JQuery and dojo), and debug-
ging tools to rapidly prototype and test
an application. When they want to run
the application on an actual phone,
they can simply copy it from the desk-
top to the phone’s memory card.

W e’ve already produced several
Argos applications with novel

user experiences that combine various
distinct phone capabilities. Even at this
early stage, we’ve found it beneficial to
rapidly prototype applications using a
system that integrates fluidly with the
Internet, allows access to low-level
capabilities, and provides a consistent
and clean abstraction.

There are several different areas in
which Argos can expand. For develop-
ers, we see the need for a higher-level IDE
that lets them drag-and-drop modules to
build the basics of an application before
coding in earnest. We also see an oppor-
tunity to explore and improve on exist-
ing mobile security models; for example,
making access to resources and applica-
tions depend on the context of use.

For users, Argos could lead to
greater flexibility and customizability
of their phone’s user interface. The fact
that Argos, including the application

launcher, is really just a set of HTML,
CSS, and JavaScript files means that
many more people have the skills to
change their phone’s look and interac-
tion style. This could potentially lead
to a robust themes marketplace, letting
users deeply customize their phones
by simply installing one of thousands
of themes. This would be similar to
WordPress’s themes directory (http://
wordpress.org/extend/themes) for cus-
tomizing WordPress blogs.

Argos, PhoneGap, and other Web-
centric platforms provide a way for Web
developers to easily incorporate mobile
functionality into their applications.
The most popular functionality will
most likely be incorporated into HTML
standards, with these platforms leading
the way in the evolution of mobile,
pervasive computing.

References

	 1.	 Hewlett-Packard, An Overview of HP
WebOS, https://developer.palm.com/
content/resources/develop/overview_
of_webos/overview_of_webos.html.

	 2.	 World Wide Web Consortium, HTML5
W3C Working Draft, 25 May 2011;
www.w3.org/TR/html5.

	 3.	 B.R. Schatz and J.B. Hardin, “NCSA
Mosaic and the World Wide Web: Global

Hypermedia Protocols for the Internet,”
Science, vol. 265, no. 5174, 12 Aug.
1994, pp. 895–901.

Figure 4. You can develop in Argos on the
desktop and then copy to the phone’s
memory card.

Develop on desktop
Run on the phone

Rich Gossweiler is a

research scientist at Google.

His research interest s

include mobile and social

computing. Gossweiler has

a PhD in computer science

from the University of Virginia. Contact him at

rcg@google.com.

Figure 3. Argos provides easy access to multilayer rendering to support augmented
reality and other related applications.

HTML layer

OpenGL layer

camera layer

PC-10-04-Smartphones.indd 13 9/21/11 9:52 AM

14 PERVASIVE computing www.computer.org/pervasive

SmartPHoneS

SmartPHoneS

Register today!
http://sc11.supercomputing.org/

12-18 November 2011
Seattle, Washington, USA

The SC11 conference continues a long and successful
tradition of engaging the international community in
high performance computing, networking, storage and
analysis.

Connecting Communities through HPC

SC11
International Conference for High Performance
Computing, Networking, Storage and Analysis

Colin Mcdonough is a

software engineering intern

at Google. His research inter-

ests include mobile and Web

applications. mcdonough

will complete his bS in com-

puter science at Washington

University in St. Louis. contact him atcmcdonough@

wustl.edu.

James lin is a software

engineer at Google. His

research interests include

end-user programming and

user interface design tools.

Lin has a Phd in computer

science from the University

of california, berkeley. contact him at jameslin@

google.com.

roy Want is a research

scientist at Google. His

research interests include

mobile and ubiquitous com-

puting, wireless protocols,

embedded systems, and

automatic identification.

Want has a Phd in computer science from cam-

bridge University. He is an IEEE Fellow and an

Acm Fellow. contact him at roywant@acm.org.

The magazine of computational
tools and methods.

CiSE addresses large computational
problems by sharing effi cient

algorithms, system software and
computer architecture.

MEMBERS $49 | STUDENTS $25

www.computer.org/cise
http://cise.aip.org

PC-10-04-Smartphones.indd 14 9/21/11 9:52 AM

